hdu 4686 Arc of Dream(矩阵快速幂)
链接:http://acm.hdu.edu.cn/showproblem.php?pid=4686
题意:

其中a0 = A0
ai = ai-1*AX+AY
b0 = B0
bi = bi-1*BX+BY
最后的结果mod 1,000,000,007
n<=10^18.
分析:ai*bi=(ai-1 *ax+ay)*(bi-1 *bx+by)
=(ai-1 * bi-1 *ax*bx)+(ai-1 *ax*by)+(bi-1 *bx*ay)+(ay*by)
设p=ax*bx, q=ax*by, r=ay*bx, s=ay*by
所以ai*bi=p(ai-1 * bi-1)+q(ai-1)+r(bi-1)+s
虽然可以用递推来求出每一项,但是n太大了,直接求绝对会超时的。
设f(n)=an*bn, a(n)=an, b(n)=bn
s(n)=sum(ai*bi),i=0,1,...n
则f(i)=p*f(i-1)+q*a(i-1)+r*b(i-1)+s
这是一个递推式,对于任何一个递推式,我们都可以用矩阵法来优化,加快速度求出第n项或前n项和。
我们可以构造一个5*5的矩阵A,使得
【f(n-1),a(n-1),b(n-1),1,s(n-2)】*A=【f(n),a(n),b(n),1,s(n-1)】
=【p*f(n-1)+q*a(n-1)+r*b(n-1)+s, a(n-1)*ax+ay, b(n-1)*bx+by, 1, s(n-2)+f(n-1)】
所以我们容易得出矩阵A: 【 axbx 0 0 0 1
axby ax 0 0 0
aybx 0 bx 0 0
ayay ay by 1 0
0 0 0 0 1 】
由【f(1), a(1) ,b(1), 1, s(0)】*A = 【f(2), a(2), b(2), 1, s(1)】
以此类推得,【f(1), a(1) ,b(1), 1, s(0)】*A^(n-1) = 【f(n), a(n), b(n), 1, s(n-1)】
这样就可以快速的求出s(n-1)了,
其中f(1)=a1*b1, a(1)=a0*ax+ay,
b(1)=b0*bx+by, s(0)=a0*b0
接下来就是矩阵快速幂了。
注意:n==0时,直接输出0,不然会死循环TLE的,还有就是要用long long,也要记得mod
AC代码如下:
#include<stdio.h>
#include<string.h>
//#define LL __int64
#define LL long long
#define M 1000000007
struct Matrix
{
LL a[][];
}origin,res,tmp,A,ans;
int n;
Matrix mul(Matrix x,Matrix y)
{
int i,j,k;
memset(tmp.a,,sizeof(tmp.a));
for(i=;i<=n;i++)
for(j=;j<=n;j++)
for(k=;k<=n;k++)
{
tmp.a[i][j]+=(x.a[i][k]*y.a[k][j])%M;
tmp.a[i][j]%=M;
}
return tmp;
}
void quickpow(LL k)
{
int i;
memset(res.a,,sizeof(res.a));
for(i=;i<=n;i++)
res.a[i][i]=;
while(k)
{
if(k&)
res=mul(res,A);
A=mul(A,A);
k>>=;
}
}
int main()
{
LL N,a0,ax,ay,b0,bx,by;
LL f1,a1,b1,s0;
// while(scanf("%I64d %I64d %I64d %I64d %I64d %I64d %I64d",&N,&a0,&ax,&ay,&b0,&bx,&by)!=EOF)
while(scanf("%lld %lld %lld %lld %lld %lld %lld",&N,&a0,&ax,&ay,&b0,&bx,&by)!=EOF)
{
if(N==)
{
printf("0\n");
continue;
}
a1=(a0*ax+ay)%M;
b1=(b0*bx+by)%M;
f1=(a1*b1)%M;
s0=(a0*b0)%M;
n=;
memset(origin.a,,sizeof(origin.a));
origin.a[][]=f1;
origin.a[][]=a1;
origin.a[][]=b1;
origin.a[][]=;
origin.a[][]=s0;
memset(A.a,,sizeof(A.a));
A.a[][]=(ax*bx)%M;
A.a[][]=;
A.a[][]=(ax*by)%M;
A.a[][]=ax%M;
A.a[][]=(ay*bx)%M;
A.a[][]=bx%M;
A.a[][]=(ay*by)%M;
A.a[][]=ay%M;
A.a[][]=by%M;
A.a[][]=;
A.a[][]=; quickpow(N-);
ans=mul(origin,res);
// printf("%I64d\n",ans.a[1][5]);
printf("%lld\n",ans.a[][]);
}
return ;
}
hdu 4686 Arc of Dream(矩阵快速幂)的更多相关文章
- HDU 4686 Arc of Dream 矩阵快速幂,线性同余 难度:1
http://acm.hdu.edu.cn/showproblem.php?pid=4686 当看到n为小于64位整数的数字时,就应该有个感觉,acm范畴内这应该是道矩阵快速幂 Ai,Bi的递推式题目 ...
- hdu 4686 Arc of Dream_矩阵快速幂
题意:略 构造出矩阵就行了 | AX 0 AXBY AXBY 0 | ...
- HDU4686 Arc of Dream 矩阵快速幂
Arc of Dream Time Limit: 2000/2000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others)Tota ...
- HDU4686——Arc of Dream矩阵快速幂
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4686 题目大意: 已知a0=A0, ai=Ax*ai-1+Ay; b0=B0, bi=Bx*bi-1 ...
- S - Arc of Dream 矩阵快速幂
An Arc of Dream is a curve defined by following function: where a 0 = A0 a i = a i-1*AX+AY b 0 = B0 ...
- hdu----(4686)Arc of Dream(矩阵快速幂)
Arc of Dream Time Limit: 2000/2000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others)Tota ...
- HDOJ 4686 Arc of Dream 矩阵高速幂
矩阵高速幂: 依据关系够建矩阵 , 高速幂解决. Arc of Dream Time Limit: 2000/2000 MS (Java/Others) Memory Limit: 65535/ ...
- HDU 4686 Arc of Dream(矩阵)
Arc of Dream [题目链接]Arc of Dream [题目类型]矩阵 &题解: 这题你做的复杂与否很大取决于你建的矩阵是什么样的,膜一发kuangbin大神的矩阵: 还有几个坑点: ...
- HDU4686 Arc of Dream —— 矩阵快速幂
题目链接:https://vjudge.net/problem/HDU-4686 Arc of Dream Time Limit: 2000/2000 MS (Java/Others) Memo ...
随机推荐
- 什么是 CI/CD?(翻译)
CI/CD是什么? 原文:https://opensource.com/article/18/8/what-cicd 在谈论软件开发时,经常会提到持续集成Continuous Integration( ...
- sublime text 安装json插件
1.安装JSON插件(直接安装或在线插件安装均可) 1-1.直接安装 下载安装包https://github.com/dzhibas/SublimePrettyJson,解压缩到Packages目录( ...
- 关于Netty的学习前总结
摘要 前段时间一直在学习netty因为工作忙的原因没有写一个学习的总结,今天抽个空先把总结写了吧.事先声明,本文不会详细的介绍每一个部分不过每个部分都会附上讲解详细的url.本文只是为了解释通Nett ...
- Unity3D — — Inspector面板编辑
转载官方文档,暂未深入研究 PropertyDrawer
- LinuxMint 18.3禁用ipv6
编辑/etc/sysctl.conf文件,添加如下内容 net.ipv6.conf.all.disable_all = 1 保存后执行 sudo sysctl -p 即可生效
- FFMS2 API 译文 [原创]
FFMS2 又称 FFmpegSource2,参阅 https://github.com/FFMS/ffms2. 原文:https://github.com/FFMS/ffms2/blob/maste ...
- 六大iT公司的组织结构
- "api-ms-win-crt-runtime-l1-1-0.dll 丢失"怎么办?详细解决步骤
api-ms-win-crt-runtime-l1-1-0.dll 丢失 电脑找不到api-ms-win-crt-runtime-l1-1-0.dll文件解决方法: 问题描述: 1.开机提示" ...
- slotting filter笔记
1.slot filling是为了让用户的意图转化为明确的指令而补全信息的过程. 2.准入条件 从一个开放域转入到封闭域,或者从一个封闭域转入到另一个封闭域,中间的跳转是需要逻辑判断的,而这个逻辑判断 ...
- Cocos2dx源码赏析(1)之启动流程与主循环
Cocos2dx源码赏析(1)之启动流程与主循环 我们知道Cocos2dx是一款开源的跨平台游戏引擎,而学习开源项目一个较实用的办法就是读源码.所谓,"源码之前,了无秘密".而笔者 ...