Closest Common Ancestors
Time Limit: 2000MS   Memory Limit: 10000K
Total Submissions: 13370   Accepted: 4338

Description

Write a program that takes as input a rooted tree and a list of pairs of vertices. For each pair (u,v) the program determines the closest common ancestor of u and v in the tree. The closest common ancestor of two nodes u and v is the node w that is an ancestor of both u and v and has the greatest depth in the tree. A node can be its own ancestor (for example in Figure 1 the ancestors of node 2 are 2 and 5)

Input

The data set, which is read from a the std input, starts with the tree description, in the form:

nr_of_vertices 
vertex:(nr_of_successors) successor1 successor2 ... successorn 
...
where vertices are represented as integers from 1 to n ( n <= 900 ). The tree description is followed by a list of pairs of vertices, in the form: 
nr_of_pairs 
(u v) (x y) ...

The input file contents several data sets (at least one). 
Note that white-spaces (tabs, spaces and line breaks) can be used freely in the input.

Output

For each common ancestor the program prints the ancestor and the number of pair for which it is an ancestor. The results are printed on the standard output on separate lines, in to the ascending order of the vertices, in the format: ancestor:times 
For example, for the following tree: 

Sample Input

5
5:(3) 1 4 2
1:(0)
4:(0)
2:(1) 3
3:(0)
6
(1 5) (1 4) (4 2)
(2 3)
(1 3) (4 3)

Sample Output

2:1
5:5

Hint

Huge input, scanf is recommended.

Source

模板题

 /* ***********************************************
Author :kuangbin
Created Time :2013-9-5 8:54:16
File Name :F:\2013ACM练习\专题学习\LCA\POJ1470.cpp
************************************************ */ #include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
using namespace std;
const int MAXN = ;
int rmq[*MAXN];//rmq数组,就是欧拉序列对应的深度序列
struct ST
{
int mm[*MAXN];
int dp[*MAXN][];//最小值对应的下标
void init(int n)
{
mm[] = -;
for(int i = ;i <= n;i++)
{
mm[i] = ((i&(i-)) == )?mm[i-]+:mm[i-];
dp[i][] = i;
}
for(int j = ; j <= mm[n];j++)
for(int i = ; i + (<<j) - <= n; i++)
dp[i][j] = rmq[dp[i][j-]] < rmq[dp[i+(<<(j-))][j-]]?dp[i][j-]:dp[i+(<<(j-))][j-];
}
int query(int a,int b)//查询[a,b]之间最小值的下标
{
if(a > b)swap(a,b);
int k = mm[b-a+];
return rmq[dp[a][k]] <= rmq[dp[b-(<<k)+][k]]?dp[a][k]:dp[b-(<<k)+][k];
}
};
//边的结构体定义
struct Edge
{
int to,next;
};
Edge edge[MAXN*];
int tot,head[MAXN]; int F[MAXN*];//欧拉序列,就是dfs遍历的顺序,长度为2*n-1,下标从1开始
int P[MAXN];//P[i]表示点i在F中第一次出现的位置
int cnt; ST st;
void init()
{
tot = ;
memset(head,-,sizeof(head));
}
void addedge(int u,int v)//加边,无向边需要加两次
{
edge[tot].to = v;
edge[tot].next = head[u];
head[u] = tot++;
}
void dfs(int u,int pre,int dep)
{
F[++cnt] = u;
rmq[cnt] = dep;
P[u] = cnt;
for(int i = head[u];i != -;i = edge[i].next)
{
int v = edge[i].to;
if(v == pre)continue;
dfs(v,u,dep+);
F[++cnt] = u;
rmq[cnt] = dep;
}
}
void LCA_init(int root,int node_num)//查询LCA前的初始化
{
cnt = ;
dfs(root,root,);
st.init(*node_num-);
}
int query_lca(int u,int v)//查询u,v的lca编号
{
return F[st.query(P[u],P[v])];
}
bool flag[MAXN];
int Count_num[MAXN];
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int n;
int u,v,k;
int Q;
while(scanf("%d",&n) == )
{
init();
memset(flag,false,sizeof(flag));
for(int i = ;i <= n;i++)
{
scanf("%d:(%d)",&u,&k);
while(k--)
{
scanf("%d",&v);
flag[v] = true;
addedge(u,v);
addedge(v,u);
}
}
int root;
for(int i = ;i <= n;i++)
if(!flag[i])
{
root = i;
break;
}
LCA_init(root,n);
memset(Count_num,,sizeof(Count_num));
scanf("%d",&Q);
while(Q--)
{
char ch;
cin>>ch;
scanf("%d %d)",&u,&v);
Count_num[query_lca(u,v)]++;
}
for(int i = ;i <= n;i++)
if(Count_num[i] > )
printf("%d:%d\n",i,Count_num[i]);
}
return ;
}

POJ 1470 Closest Common Ancestors (LCA, dfs+ST在线算法)的更多相关文章

  1. POJ - 1330 Nearest Common Ancestors(dfs+ST在线算法|LCA倍增法)

    1.输入树中的节点数N,输入树中的N-1条边.最后输入2个点,输出它们的最近公共祖先. 2.裸的最近公共祖先. 3. dfs+ST在线算法: /* LCA(POJ 1330) 在线算法 DFS+ST ...

  2. POJ 1330 Nearest Common Ancestors (dfs+ST在线算法)

    详细讲解见:https://blog.csdn.net/liangzhaoyang1/article/details/52549822 zz:https://www.cnblogs.com/kuang ...

  3. poj 1470 Closest Common Ancestors LCA

    题目链接:http://poj.org/problem?id=1470 Write a program that takes as input a rooted tree and a list of ...

  4. POJ 1470 Closest Common Ancestors(LCA&RMQ)

    题意比较费劲:输入看起来很麻烦.处理括号冒号的时候是用%1s就可以.还有就是注意它有根节点...Q次查询 在线st算法 /*************************************** ...

  5. POJ 1470 Closest Common Ancestors(LCA 最近公共祖先)

    其实这是一个裸求LCA的题目,我使用的是离线的Tarjan算法,但是这个题的AC对于我来说却很坎坷……首先是RE,我立马想到数组开小了,然后扩大了数组,MLE了……接着把数组调整适当大小,又交了一发, ...

  6. POJ 1470 Closest Common Ancestors LCA题解

    本题也是找LCA的题目,只是要求多次查询.一般的暴力查询就必定超时了,故此必须使用更高级的方法,这里使用Tarjan算法. 本题处理Tarjan算法,似乎输入处理也挺麻烦的. 注意: 由于查询的数据会 ...

  7. POJ 1470 Closest Common Ancestors(最近公共祖先 LCA)

    POJ 1470 Closest Common Ancestors(最近公共祖先 LCA) Description Write a program that takes as input a root ...

  8. POJ 1470 Closest Common Ancestors 【LCA】

    任意门:http://poj.org/problem?id=1470 Closest Common Ancestors Time Limit: 2000MS   Memory Limit: 10000 ...

  9. POJ 1470 Closest Common Ancestors (LCA,离线Tarjan算法)

    Closest Common Ancestors Time Limit: 2000MS   Memory Limit: 10000K Total Submissions: 13372   Accept ...

随机推荐

  1. bootstrap-fileinput上传文件的插件使用总结----编辑已成功上传过的图片

    http://plugins.krajee.com/file-plugin-methods-demo 具体操作 http://plugins.krajee.com/file-preview-manag ...

  2. java 内部类的继承

    因为内部类的构造器必须连接到指向其外部类对象的引用. 因为在继承内部类的时候那个指向外部类对象的"秘密的"引用必须被初始化,而在导出类中不再存在可连接的默认对象,要解决这个问题必须 ...

  3. SQLServer 查看备份进度

    SELECT   DB_NAME(er.[database_id]) [DatabaseName],  er.[command] AS [CommandType],  er.[percent_comp ...

  4. Decorator 装饰

    意图 动态地给一个对象添加一些额外的职责.就增加功能来说,Decorator模式相比生成子类更为灵活. 结构 Component:定义一个对象接口,可以给这些对象动态地添加职责:(纯虚函数) Conc ...

  5. 机械加工行业计划排程:中车实施应用易普优APS

    一.机械加工行业现状 机械制造业在生产管理上的主要特点是:离散为主.流程为辅.装配为重点.机械制造业的基本加工过程是把原材料分割,大部分属于多种原材料平行加工,逐一经过车.铣.刨.磨或钣金成型等加工工 ...

  6. codeforces 603 A

    题目大意:给你一个0,1串, 你可以反转一段连续的区间,问你最长的合法子串是多长, 合法字串相邻的两个不能相同. 思路:dp[ i ][ k ][ j ] 表示到第 i 个字符, 处于k这种状态, k ...

  7. python之markdown转html

    python之markdown转html 为了方便,定义一个markdown转html的函数,直接调用即可 import markdown def md2html(mdstr): exts = ['m ...

  8. sql中循环插入

    #!/bin/sh for i in {1..10}dokdsql sys/kdb<<EOF insert into test values(2) ; EOFdone

  9. Redis的一些配置

    Redis的一些配置 daemonize 如果需要在后台运行,把该项设置为yes,默认为no pidfile 配置多个pid的地址,默认在/var/run/redis.pid bind 绑定ip,设置 ...

  10. WCF服务发布到IIS中去(VS2013+win7系统)

    第一个WCF程序 1. 新建立空白解决方案,并在解决方案中新建项目,项目类型为:WCF服务应用程序.建立完成后如下图所示: 2.删除系统生成的两个文件IService1.cs与Service1.svc ...