题目传送门

K-th Number
Time Limit: 20000MS   Memory Limit: 65536K
Total Submissions: 69053   Accepted: 24471
Case Time Limit: 2000MS

Description

You are working for Macrohard company in data structures department. After failing your previous task about key insertion you were asked to write a new data structure that would be able to return quickly k-th order statistics in the array segment. 
That is, given an array a[1...n] of different integer numbers, your program must answer a series of questions Q(i, j, k) in the form: "What would be the k-th number in a[i...j] segment, if this segment was sorted?" 
For example, consider the array a = (1, 5, 2, 6, 3, 7, 4). Let the question be Q(2, 5, 3). The segment a[2...5] is (5, 2, 6, 3). If we sort this segment, we get (2, 3, 5, 6), the third number is 5, and therefore the answer to the question is 5.

Input

The first line of the input file contains n --- the size of the array, and m --- the number of questions to answer (1 <= n <= 100 000, 1 <= m <= 5 000). 
The second line contains n different integer numbers not exceeding 109 by their absolute values --- the array for which the answers should be given. 
The following m lines contain question descriptions, each description consists of three numbers: i, j, and k (1 <= i <= j <= n, 1 <= k <= j - i + 1) and represents the question Q(i, j, k).

Output

For each question output the answer to it --- the k-th number in sorted a[i...j] segment.

Sample Input

7 3
1 5 2 6 3 7 4
2 5 3
4 4 1
1 7 3

Sample Output

5
6
3

Hint

This problem has huge input,so please use c-style input(scanf,printf),or you may got time limit exceed.

Source

Northeastern Europe 2004, Northern Subregion

  分析:  
  没错,这是主席树的模板,但是这里我们也可以用整体二分来做(shui)。
  关于整体二分,这个博主也才刚学,知识点什么的也不多讲,只放模板代码,关于知识点可以参考一下这个julao的博客。
  Code:
//It is made by HolseLee on 5th Oct 2018
//POJ2104
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define inf 0x3f3f3f3f
using namespace std; const int N=2e5+;
int n,m,ans[N],cnt,c[N];
struct Node {
int x,y,k,pos,type;
Node() {}
Node(const int _x,const int _y,const int _k,const int _p,const int _t):
x(_x), y(_y), k(_k), pos(_p), type(_t) {}
}q[N],q1[N],q2[N]; inline int read()
{
char ch=getchar(); int num=; bool flag=false;
while( ch<'' || ch>'' ) {
if( ch=='-' ) flag=true; ch=getchar();
}
while( ch>='' && ch<='' ) {
num=num*+ch-''; ch=getchar();
}
return flag ? -num : num;
} inline int lowbit(int x)
{
return x&(-x);
} inline void add(int pos,int x)
{
for(; pos<=n; pos+=lowbit(pos)) c[pos]+=x;
} inline int quary(int pos)
{
int ret=;
for(; pos>; pos-=lowbit(pos)) ret+=c[pos];
return ret;
} void solve(int l,int r,int L,int R)
{
if( l>r || L>R ) return;
if( l==r ) {
for(int i=L; i<=R; ++i)
if( q[i].type ) ans[q[i].pos]=l;
return ;
}
int mid=(l+r)>>, cnt1=, cnt2=;
for(int i=L; i<=R; ++i)
if( q[i].type ) {
int tmp=quary(q[i].y)-quary(q[i].x-);
if( tmp>=q[i].k ) q1[++cnt1]=q[i];
else q[i].k-=tmp, q2[++cnt2]=q[i];
} else {
if( q[i].x<=mid ) q1[++cnt1]=q[i], add(q[i].pos,);
else q2[++cnt2]=q[i];
}
for(int i=; i<=cnt1; ++i)
if(!q1[i].type) add(q1[i].pos,-);
for(int i=; i<=cnt1; ++i) q[L+i-]=q1[i];
for(int i=; i<=cnt2; ++i) q[L+cnt1+i-]=q2[i];
solve(l,mid,L,L+cnt1-), solve(mid+,r,L+cnt1,R);
} int main()
{
n=read(), m=read();
int x,y,z;
for(int i=; i<=n; ++i)
x=read(), q[++cnt]=Node(x,,,i,);
for(int i=; i<=m; ++i) {
x=read(), y=read(), z=read();
q[++cnt]=Node(x,y,z,i,);
}
solve(-inf,inf,,cnt);
for(int i=; i<=m; ++i)
printf("%d\n",ans[i]);
return ;
}

POJ2104 K-th Number [整体二分]的更多相关文章

  1. POJ2104 K-th Number(整体二分)

    题解 又一次做这个题上一次用的是线段树上二分.这次用的是整体二分.结果: (第一个是整体二分) 整体二分就是对于所有查询都二分一个值.然后根据能不能成立把询问修改分成两部分,然后第二部分继承第一部分的 ...

  2. BZOJ 3110: [Zjoi2013]K大数查询 [整体二分]

    有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c如果是2 a b c形式,表示询问从第a个位置到第b个位置,第C大的数是多少. N ...

  3. BZOJ3110:[ZJOI2013]K大数查询(整体二分)

    Description 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c.如果是2 a b c形式,表示询问从第a个位置到第b个位 ...

  4. BZOJ 3110 K大数查询 | 整体二分

    BZOJ 3110 K大数查询 题面 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c 如果是2 a b c形式,表示询问从第a个 ...

  5. BZOJ.3110.[ZJOI2013]K大数查询(整体二分 树状数组/线段树)

    题目链接 BZOJ 洛谷 整体二分求的是第K小(利用树状数组).求第K大可以转为求第\(n-K+1\)小,但是这样好像得求一个\(n\). 注意到所有数的绝对值\(\leq N\),将所有数的大小关系 ...

  6. 【BZOJ-3110】K大数查询 整体二分 + 线段树

    3110: [Zjoi2013]K大数查询 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 6265  Solved: 2060[Submit][Sta ...

  7. 静态区间第K小(整体二分、主席树)

    题目链接 题解 主席树入门题 但是这里给出整体二分解法 整体二分顾名思义是把所有操作放在一起二分 想想,如果求\([1-n]\)的第\(k\)小怎么二分求得? 我们可以二分答案\(k\), \(O(n ...

  8. ZOJ 1112 Dynamic Rankings【动态区间第K大,整体二分】

    题目链接: http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1112 题意: 求动态区间第K大. 分析: 把修改操作看成删除与增加 ...

  9. [ZJOI2013]K大数查询——整体二分

    题目描述 有N个位置,M个操作.操作有两种,每次操作如果是: 1 a b c:表示在第a个位置到第b个位置,每个位置加上一个数c 2 a b c:表示询问从第a个位置到第b个位置,第C大的数是多少. ...

随机推荐

  1. 2017ACM暑期多校联合训练 - Team 9 1005 HDU 6165 FFF at Valentine (dfs)

    题目链接 Problem Description At Valentine's eve, Shylock and Lucar were enjoying their time as any other ...

  2. 2017中国大学生程序设计竞赛 - 网络选拔赛 1005 HDU 6154 CaoHaha's staff (找规律)

    题目链接 Problem Description "You shall not pass!" After shouted out that,the Force Staff appe ...

  3. cin.get()和cin.getline()之间的区别

    cin.getline()和cin.get()都是对输入的面向行的读取,即一次读取整行而不是单个数字或字符,但是二者有一定的区别. cin.get()每次读取一整行并把由Enter键生成的换行符留在输 ...

  4. JS简介——(一)

    0.结构

  5. 连接数据库及出现System.AccessViolationException错误的解决方法

    调试后发现, connection.Open();以后报错,System.AccessViolationException: 尝试读取或写入受保护的内存.这通常指示其他内存已损坏,网上搜了很多都没有作 ...

  6. vue表格中显示金额格式化与保存时格式化为数字并校验!

    最近项目中遇到了成本计算的,需要显示金额,保存一下,以后方便直接拿来用! 一 数字转金额格式显示 //数字转金额格式 format:function(s){ if(/[^0-9\.]/.test(s) ...

  7. Robotium测试套管理测试用例

    前提:已写好测试用例 新建个测试套MyTestSuite管理你需要跑的测试用例,或者将相同功能的测试用例归纳到一个测试套中 package com.robotium.test.testsuite; i ...

  8. linux常用命令总结->1

    文件查看命令 cat //查看文件内容 示例:cat /etc/passwd 示例:cat -n /etc/passwd //-n参数行号 示例:cat >> xuliangwei.txt ...

  9. PHP计算字符串的长度

    <?php /** * 计算字符串的长度(汉字按照两个字符计算) * * @param string $str 字符串 * * @return int */ function str_len($ ...

  10. day10作业

    1.Java中,用{}括起来的代码称为代码块. 代码块分为局部代码块,构造代码块,静态代码块,同步代码块 局部代码块:在方法中出现,限定生命周期,及早释放,提高内存利用率 构造代码块:在类中方法外出现 ...