题目描述

监狱有连续编号为1...N的N个房间,每个房间关押一个犯人,有M种宗教,每个犯人可能信仰其中一种。如果相邻房间的犯人的宗教相同,就可能发生越狱,求有多少种状态可能发生越狱。

输入

输入两个整数M,N。1<=M<=10^8,1<=N<=10^12。

输出

可能越狱的状态数,模100003取余

样例输入

2 3

样例输出

6

题解

越狱状态数=总状态数-不越狱状态数=\(m^{n}-m\cdot\left(m-1\right)^{n-1}\)

快速幂+取模

 #include<cstdio>
const int Mod=;
int m;long long n;
int pow(int base,long long exp){
int ans=;
while(exp){
if(exp&) ans=1ll*ans*base%Mod;
base=1ll*base*base%Mod;
exp>>=;
}
return ans;
}
int main(){
scanf("%d%lld",&m,&n);
printf("%d",((pow(m,n)-1ll*m*pow(m-,n-))%Mod+Mod)%Mod);
return ;
}

【bzoj题解】1008 越狱的更多相关文章

  1. BZOJ 1008 越狱题解

    其实这题很水,显然n个房间有m种宗教,总共有n^m种情况, 我们再考虑不合法的情况,显然第一个房间有m种情况,而后一种只有m-1种情况(因为不能相同) 所以不合法的情况有(m-1)^(n-1)*m种情 ...

  2. 【BZOJ】1008: [HNOI2008]越狱(快速幂)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1008 刚开始看不会做啊,以为是dp,但是数据太大!!!所以一定有log的算法或者O1的算法,,,,还 ...

  3. BZOJ 1008 越狱

    Description 监狱有连续编号为1...N的N个房间,每个房间关押一个犯人,有M种宗教,每个犯人可能信仰其中一种.如果相邻房间的犯人的宗教相同,就可能发生越狱,求有多少种状态可能发生越狱 In ...

  4. BZOJ 1008 越狱 组合数学

    题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=1008 题目大意: 监狱有连续编号为1...N的N个房间,每个房间关押一个犯人,有M种宗 ...

  5. BZOJ 1008 越狱 (组合数学)

    题解:正难则反,从总数中减去全部相邻不相同的数目就是答案,n*(n-1)^(m-1):第一个房间有n中染色方案,剩下m-1个房间均只有n-1种染色方案,用总数减就是答案. #include <c ...

  6. 【BZOJ】1008: [HNOI2008]越狱(组合数学)

    题目 题目描述 监狱有连续编号为1...N的N个房间,每个房间关押一个犯人,有M种宗教,每个犯人可能信仰其中一种.如果相邻房间的犯人的宗教相同,就可能发生越狱,求有多少种状态可能发生越狱 输入输出格式 ...

  7. 【NOI题解】【bzoj题解】NOI2008 bzoj1063 道路设计

    @ACMLCZH学长出的毒瘤题T3.再也不是“善良”的出题人了. 题意:bzoj. 题解: 经典的树形DP题目,屡见不鲜了,然而我还是没有写出来. 这一类的题目有很多,例如这里的C题. 主要套路是把对 ...

  8. 【bzoj题解】题解传送门

    如题,题解传送门: 1001 1008 1012

  9. BZOJ 题解continue

    1041 圆上的整点 暴力枚举 会超时 这道题很像之前一次noip模拟题(当时的我还太水了(虽然现在也很水)) x2+y2=R2 考虑变型 x2=(R+y)(R-y) int d=gcd(R,y) i ...

随机推荐

  1. 第219天:Angular---过滤器

    在Angular中,过滤器的功能主要是格式化数据表达式,且可以自定义过滤器.作用域(scope)主要服务于页面模板,在控制器和页面中起桥梁作用,保存模板中的数据对象,为模板中的元素提供方法和属性. 一 ...

  2. HDU4240_Route Redundancy

    题目很简单.给一个有向图,求两点间的最大流量与任意一条路中的最大流量的比值. 最大流不说了,求出单条流量最大的路径可以用类似Spfa的方法来搞,保存到达当前点的最大流量,一直往下更新即可. 召唤代码君 ...

  3. Candies CodeForces - 991C(二分水题)

    就是二分暴力就好了 为什么要记下来 呵呵....emm你说为什么... 行吧 好吧 我一直以为我的二分出问题了 原来不是 依旧很帅 统计的时候求的减了多少次  然后用次数乘了mid 这样做会使那个人获 ...

  4. Laravel4快速安装方法,解决Laravel4安装速度慢

    Laravel4原始安装方法 Laravel4 是构建在 Composer 之上的, 之前的安装方法是如下:   composer create-project laravel/laravel you ...

  5. 关于AC自动机和DP的联系

    首先是描述个大概.不说一些特殊的DP 或者借用矩阵来状态转移 (这些本质都是一样的). 只讲AC自动机和DP的关系(个人理解). AC自动机 又可以叫做状态机. 我一开始的认为.AC 自动机提供了一些 ...

  6. [AT2567] [arc074_c] RGB Sequence

    题目链接 AtCoder:https://arc074.contest.atcoder.jp/tasks/arc074_c 洛谷:https://www.luogu.org/problemnew/sh ...

  7. Java开发23种设计模式

    设计模式(Design Patterns) -- --  -- 可复用面向对象软件的基础 设计模式(Design Patterns)是一套被反复使用.多数人知晓的.经过分类编目的.代码设计经验的总结. ...

  8. 团体程序设计天梯赛 L3-004. 肿瘤诊断

    数组的大小不能开太大,否则会出现段错误 用bfs而不用dfs,dfs存储太多中间过程,会超内存 #include <stdio.h> #include <stdlib.h> # ...

  9. faster rcnn算法及源码及论文解析相关博客

    1. 通过代码理解faster-RCNN中的RPN http://blog.csdn.net/happyflyy/article/details/54917514 2. faster rcnn详解 R ...

  10. centos禁用ipv6

    两步完成 vi /etc/sysctl.conf net.ipv6.conf.all.disable_ipv6=1sysctl -p /etc/sysctl.conf