可以非常轻易的将题意转化为有多少子串满足排名相同

注意到$KMP$算法只会在当前字符串的某尾添加和删除字符

因此,如果添加和删除后面的字符对于前面的字符没有影响时,我们可以用$KMP$来模糊匹配

对于本题而言,在末尾插入一个字符时,如果$S$串和$T$串中这两个字符的排名一样,那么它们对前面的影响也是一样的

因此,插入或者删除字符时,后面的字符如果排名一样,可以任何对前面没有影响

反之,如果不一样,那么无法匹配

所以,这满足模糊匹配的条件

我们可以拿树状数组来维护插入和删除

由于$next[i] \leq next[i - 1] + 1$,因此分析一下复杂度不会超过$O(n \log n)$

好像带了大常数......

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
namespace remoon {
#define ri register int
#define rep(iu, st, ed) for(ri iu = st; iu <= ed; iu ++)
#define drep(iu, ed, st) for(ri iu = ed; iu >= st; iu --)
#define gc getchar
inline int read() {
int p = , w = ; char c = gc();
while(c > '' || c < '') { if(c == '-') w = -; c = gc(); }
while(c >= '' && c <= '') p = p * + c - '', c = gc();
return p * w;
}
}
using namespace std;
using namespace remoon; const int sid = ; int n, m, cm, tot;
int ans[sid], nxt[sid], pre[sid];
int t[sid], p[sid], h[sid], T[sid]; inline void upd(int o, int v) {
for(ri i = o; i <= m; i += i & (-i))
t[i] += v;
} inline int qry(int o) {
int ret = ;
for(ri i = o; i; i -= i & (-i))
ret += t[i];
return ret;
} void Solve() {
rep(i, , n)
pre[i] = qry(p[i]), upd(p[i], );
pre[n + ] = -; rep(i, , m) t[i] = ;
for(ri i = , j = ; i <= n; i ++)
{
while(j && qry(p[i]) != pre[j + ])
{
for(ri k = i - j; k < i - nxt[j]; k ++)
upd(p[k], -);
j = nxt[j];
}
if(qry(p[i]) == pre[j + ]) j ++, upd(p[i], );
nxt[i] = j;
} rep(i, , m) t[i] = ;
for(ri i = , j = ; i <= m; i ++)
{
while(j && qry(h[i]) != pre[j + ])
{
for(ri k = i - j; k < i - nxt[j]; k ++)
upd(h[k], -);
j = nxt[j];
}
if(qry(h[i]) == pre[j + ]) j ++, upd(h[i], );
if(j == n) ans[++ tot] = i - n + ;
}
} int main() { n = read(); m = read();
rep(i, , n) p[read()] = i;
rep(i, , m) T[i] = h[i] = read(); sort(T + , T + m + );
cm = unique(T + , T + m + ) - T - ;
rep(i, , m) h[i] = lower_bound(T + , T + cm + , h[i]) - T; Solve();
printf("%d\n", tot);
rep(i, , tot) printf("%d ", ans[i]);
printf("\n");
return ;
}

luoguP4696 [CEOI2011]Matching KMP+树状数组的更多相关文章

  1. 【bzoj2384】[Ceoi2011]Match 特殊匹配条件的KMP+树状数组

    题目描述 给出两个长度分别为n.m的序列A.B,求出B的所有长度为n的连续子序列(子串),满足:序列中第i小的数在序列的Ai位置. 输入 第一行包含两个整数n, m (2≤n≤m≤1000000).  ...

  2. 【POJ 3167】Cow Patterns (KMP+树状数组)

    Cow Patterns Description A particular subgroup of K (1 <= K <= 25,000) of Farmer John's cows l ...

  3. 【未完】训练赛20190304:KMP+树状数组+线段树+优先队列

    头炸了啊,只做出L题,前两天刚看的Shawn zhou的博客学习的,幸亏看了啊,否则就爆零了,发现题目都是经典题,线段树,KMP,我都没看过,最近又在复习考研,真后悔大一大二没好好学习啊,得抽时间好好 ...

  4. 【poj 3167】Cow Patterns(字符串--KMP匹配+数据结构--树状数组)

    题意:给2个数字序列 a 和 b ,问按从小到达排序后,a中的哪些子串与b的名次匹配. a 的长度 N≤100,000,b的长度 M≤25,000,数字的大小 K≤25. 解法:[思考]1.X 暴力. ...

  5. 【LOJ#2507】[CEOI2011]Matching(KMP,树状数组)

    [LOJ#2507][CEOI2011]Matching(KMP,树状数组) 题面 LOJ 题解 发现要做的是排名串的匹配. 然后我们考虑把它转成这个位置之前有多少个数小于当前这个数,这样子只要每个位 ...

  6. [bzoj1892][bzoj2384][bzoj1461][Ceoi2011]Match/字符串的匹配_KMP_树状数组

    2384: [Ceoi2011]Match 1892: Match 1461: 字符串的匹配 题目大意: 数据范围: 题解: 很巧妙的一道题呀. 需要对$KMP$算法有很深的理解才行. 首先我们需要发 ...

  7. 51nod 1286 三段子串(树状数组+拓展kmp)

    题意: 给定一个字符串S,找到另外一个字符串T,T既是S的前缀,也是S的后缀,并且在中间某个地方也出现一次,并且这三次出现不重合.求T最长的长度. 例如:S = "abababababa&q ...

  8. 「模拟赛20180306」回忆树 memory LCA+KMP+AC自动机+树状数组

    题目描述 回忆树是一棵树,树边上有小写字母. 一次回忆是这样的:你想起过往,触及心底--唔,不对,我们要说题目. 这题中我们认为回忆是这样的:给定 \(2\) 个点 \(u,v\) (\(u\) 可能 ...

  9. 【AC自动机】【树状数组】【dfs序】洛谷 P2414 [NOI2011]阿狸的打字机 题解

        这一题是对AC自动机的充分理解和树dfs序的巧妙运用. 题目背景 阿狸喜欢收藏各种稀奇古怪的东西,最近他淘到一台老式的打字机. 题目描述 打字机上只有28个按键,分别印有26个小写英文字母和' ...

随机推荐

  1. JS三种消息框的使用

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  2. replication-manager 搭建

    replication-manager 搭建 介绍 replication-manager 主要用于mysql主从结构的监控和主从切换. 安装 vi /etc/yum.repos.d/signal18 ...

  3. Django中HttpRequest和HttpResponse

    请求和响应对象 Django中通过使用请求和响应对象来传递系统的状态. 当请求一个页面的时候,Django就创建一个HttpRequest对象,它包含了关于请求的元数据对象,然后Django加载适当的 ...

  4. Scrapy的【SitemapSpider】的【官网示例】没有name属性

    Windows 10家庭中文版,Python 3.6.4,Scrapy 1.5.0, 上午看了Scrapy的Spiders官文,并按照其中的SitemapSpider的示例练习,发现官文的示例存在问题 ...

  5. Session和Cookie,Django的自动登录机制

    什么是Cookie? Cookie是浏览器的本地存储机制,存储服务器返回的各种信息,下次发起请求时再发送给服务端,比如访问baidu 什么是Session? 刚才说道,Cookie存储服务端返回的信息 ...

  6. Focal Loss for Dense Object Detection 论文阅读

    何凯明大佬 ICCV 2017 best student paper 作者提出focal loss的出发点也是希望one-stage detector可以达到two-stage detector的准确 ...

  7. html5拖拽初窥

    说到拖动,大概有两种方式,一种是js实现,之前已经介绍过,今天来讲解另外一种方式,那就是使用html5实现拖动. css样式 .box { width: 200px; height: 200px; b ...

  8. maven网址

    http://www.yiibai.com/maven/maven_environment_setup.html

  9. (四)MyBatis关系映射

    第一节:一对一关系实现 需要实现一对一的关系,首先我们有两张表,t-addree和t_student. CREATE TABLE `t_address` ( `id` ) NOT NULL AUTO_ ...

  10. iOS图片缓存

    iOS的内存管理始终是开发者面临的大问题,内存占用过大时,很容易会被系统kill掉,开发者需要尽可能的优化内存占用问题. 现在的App界面做的越来越精致,里面集成了大量的图片,笔者首先想到的就是如何减 ...