numpy的array数据类型(创建)
import numpy as np # 创建
# 创建一维数组
a = np.array([1, 2, 3])
print(a)
'''
[1 2 3]
'''
# 创建多维数组
b = np.array([(1, 2, 3), (4, 5, 6)])
print(b)
'''
[[1 2 3]
[4 5 6]]
'''
# 创建等差一维数组
c = np.arange(1, 5, 0.5)
print(c)
'''
[1. 1.5 2. 2.5 3. 3.5 4. 4.5]
'''
# 创建随机数数组
d = np.random.random((2, 2))
print(d)
'''
[[0.65746941 0.09766114]
[0.15024283 0.9212932 ]]
'''
# 创建一个确定起始点和终止点和个数的等差一维数组
##包含终止点
e = np.linspace(1, 2, 10)
print(e)
'''
[1. 1.11111111 1.22222222 1.33333333 1.44444444 1.55555556 1.66666667 1.77777778 1.88888889 2. ]
'''
##不包含终止点
f = np.linspace(1, 2, 10, endpoint=False)
print(f)
'''
[1. 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9]
'''
# 创建一个全为‘1’的 数组
g = np.ones([2, 3])
print(g)
'''
[[1. 1. 1.]
[1. 1. 1.]]
'''
# 创建一个全为‘0’的数组
h = np.zeros([2, 3])
print(h)
'''
[[0. 0. 0.]
[0. 0. 0.]]
'''
# 创建一个全为'自定义的值'的数组
i = np.full((2, 3), fill_value=21)
print(i)
'''
[[21 21 21]
[21 21 21]]
'''
# 创建一个对角线为‘1’,其他的位置为‘0’
j = np.eye(4)
print(j)
'''
[[1. 0. 0. 0.]
[0. 1. 0. 0.]
[0. 0. 1. 0.]
[0. 0. 0. 1.]]
'''
# 创建一个标准的正态分布
h = np.random.randn(50)
print(h)
'''
[ 0.01250963 -0.7387912 0.34890184 0.45922031 0.69632711 1.45936167
-0.01958069 -0.42200162 -1.59439929 -0.38340785 -0.09423212 0.46495457
-1.07383807 1.26489024 1.50519718 1.21760287 -1.43837182 0.11904866
0.29399612 -1.66294523 1.42131044 0.13073129 0.02832415 1.57078671
-0.96096118 0.1636397 0.25686109 0.92687274 -0.14074038 -0.2355995
0.06471922 0.00188039 0.56639013 -0.12014897 -0.5348929 -0.91173276
1.04026246 -1.39317966 -0.42333174 -0.28924722 1.09360504 0.16879087
-0.4505147 0.38581222 -0.42106339 0.29927751 -0.9056031 -0.86102655
-0.61423026 -0.94604185]
'''
# 创建一个自定义的正态分布
h = np.random.normal(loc=175, scale=0.3, size=50)
print(h)
# loc为位置参数
# scale为尺度参数,值越大离散程度越大
# size为总数据个数
'''
[175.01002617 175.49445311 175.15833447 174.42510606 174.78144183
174.84035925 174.76628391 174.84687069 174.93967239 175.29902946
175.08438032 175.1476928 174.992446 174.87066715 175.02578143
175.03768609 175.20249608 174.96956083 174.62277043 175.59116051
175.59419255 174.74925345 175.44279974 175.07262176 174.91848554
174.90220037 175.19871001 175.04802743 174.71962518 175.07843723
174.87821195 174.88255464 175.56090823 174.44660242 175.11230508
174.89422801 174.63803226 175.03060753 174.84452539 174.99050179
174.9037525 174.90163791 175.42865325 174.76396595 174.99927621
175.15771656 174.72123296 175.22466598 174.72349497 174.95927315]
'''
# 通过函数创建数组
k = np.fromfunction(lambda i, j: (i + 1) * (j + 1), (9, 9))
print(k)
'''
[[ 1. 2. 3. 4. 5. 6. 7. 8. 9.]
[ 2. 4. 6. 8. 10. 12. 14. 16. 18.]
[ 3. 6. 9. 12. 15. 18. 21. 24. 27.]
[ 4. 8. 12. 16. 20. 24. 28. 32. 36.]
[ 5. 10. 15. 20. 25. 30. 35. 40. 45.]
[ 6. 12. 18. 24. 30. 36. 42. 48. 54.]
[ 7. 14. 21. 28. 35. 42. 49. 56. 63.]
[ 8. 16. 24. 32. 40. 48. 56. 64. 72.]
[ 9. 18. 27. 36. 45. 54. 63. 72. 81.]]
'''
numpy的array数据类型(创建)的更多相关文章
- NumPy 从数值范围创建数组
NumPy 从数值范围创建数组 这一章节我们将学习如何从数值范围创建数组. numpy.arange numpy 包中的使用 arange 函数创建数值范围并返回 ndarray 对象,函数格式如下: ...
- python numPy模块 与numpy里的数据类型、数据类型对象dtype
学习链接:http://www.runoob.com/numpy/numpy-tutorial.html 官方链接:https://numpy.org/devdocs/user/quickstart. ...
- Numpy学习之——数组创建
Numpy学习之--数组创建 过程展示 import numpy as np a = np.array([2,3,9]) a array([2, 3, 9]) a.dtype dtype('int32 ...
- NumPy 基于数值区间创建数组
来源:Python Numpy 教程 章节 Numpy 介绍 Numpy 安装 NumPy ndarray NumPy 数据类型 NumPy 数组创建 NumPy 基于已有数据创建数组 NumPy 基 ...
- numpy中 array数组的shape属性
numpy.array 的shape属性理解 在码最邻近算法(K-Nearest Neighbor)的过程中,发现示例使用了numpy的array数组管理,其中关于array数组的shape(状态)属 ...
- Numpy 学习 array np.where lexsort 切片 按行按列求平均mean
array 的创建可以通过list给 array print出来像一个表格,可以按行按列来观察. 原来是一个list相当于一行 np.where用于寻找一个condition下的坐标,返回的是一个2个 ...
- 使用Array和[]创建数组的区别
原文 简书原文:https://www.jianshu.com/p/57a337d20aea 大纲 前言 对使用Array和[]创建数组的区别的解释 个人理解 前言 JS定义数组变量时,在不需要给定数 ...
- Java反射04 : 通过Array动态创建和访问Java数组
java.lang.reflect.Array类提供了通过静态方法来动态创建和访问Java数组的操作. 本文转载自:https://blog.csdn.net/hanchao5272/article/ ...
- Java 反射 Array动态创建数组
Java 反射 Array动态创建数组 @author ixenos 注:java.lang.reflect.Array 是个反射工具包,全是静态方法,创建数组以多维数组为基准,一维数组只是特殊实现 ...
随机推荐
- 为什么不要 "lock(this)" ? lock object 并是readonly(转载)
一. 为什么要lock,lock了什么? 当我们使用线程的时候,效率最高的方式当然是异步,即各个线程同时运行,其间不相互依赖和等待.但当不同的线程都需要访问某个资源的时候,就需要同步机制了,也就是 ...
- Linux学习3-Linux系统安装CentOS6.5
1.启动虚拟机(虚拟机的安装参见Linux学习1-创建虚拟机) 本此安装系统:CentOS6.5 2.启动客户端后迅速按下F2键进入Bios设置,注意:启动后需鼠标点击虚拟机的屏幕并迅 ...
- Implementation:Bellman-ford
单源最短路径算法Bellman-ford练习,可以处理有负边的情况(也可以在存在负圈时及时终止) #include <iostream> #include <cstdlib> ...
- HTML5 MutationObserver检测页面劫持
好久没写博客了,业务一直在变化,陆陆续续的做了很多web app,被业务流淹没就很少有机会去反思,前端技术发展如此之快,常常有种不学则退的恐慌,一种技术还没吃透就涌出新的技术,然后一波人又打着各种旗帜 ...
- AGC006C Rabbit Exercise
传送门 设 \(f_{i,j}\) 表示兔子 \(i\) 在当前 \(j\) 轮的期望位置 对于一次操作 \(f_{i,j+1}=\frac{1}{2}(2f_{i-1,j}-f_{i,j})+\fr ...
- 【代码笔记】iOS-iOS的目录
一.iOS中的沙盒机制 · iOS应用程序只能对自己创建的文件系统读取文件,这个独立.封闭.安全的空间,叫做沙盒.它一般存放着程序包文件(可执行文件).图片.音频.视频.plist文件.sqlite数 ...
- 转:PHP中的使用curl发送请求(GET请求和POST请求)
原文地址:http://www.jb51.net/article/104974.htm 使用CURL发送请求的基本流程 使用CURL的PHP扩展完成一个HTTP请求的发送一般有以下几个步骤: 1.初始 ...
- Flutter TabBar
先看一下Tab的构造方法: TabBar({ Key key, @required this.tabs, this.controller, this.isScrollable: false, this ...
- AIX解压ZIP文件
AIX系统自身是没有解压ZIP文件的,但在AIX安装oracle数据库服务器的话,在$ORACLE_HOME/bin路径下方却有unzip命令,可以解压ZIP文件. 一.shell脚本 之前的版本 ...
- 关于easyUI分页
首先前台会传来两个参数,分别是rows(一页数据的大小,即一页有多少条数据)和page(第几页),根据这两个参数可以计算出从数据库中从第几 条数据开始取和要取多少条数据.数据取出来后,因为easyUI ...