题解

我是榜上最后一名= =

可能高精度用vector太慢了吧……什么破题= =

这道题很简单,如果高精度熟练代码……也很简单……然而,参数调了好久

我们发现质数的指数一定是,质数越小,指数越大,这个很显然我不说了

所以我们就用个优先队列BFS就好,队列按数从小到大排序,每次把队列的数取出来作为下一个我们需要的数(也就是大小递增且约数个数严格递增),删掉队列首比这个数约数个数小的数

然后用这个数再扩展一层质数,注意剪枝吧。。

预处理好后回答询问二分就行

质数大小开到85,搜出来的数的总量3810,在TLE的边缘试探……

vector写高精度是真的很慢……

代码

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <ctime>
#include <vector>
#include <set>
//#define ivorysi
#define eps 1e-8
#define mo 974711
#define pb push_back
#define mp make_pair
#define pii pair<int,int>
#define fi first
#define se second
#define MAXN 100005
using namespace std;
typedef long long int64;
typedef unsigned int u32;
typedef double db;
const int64 MOD = 1000000007;
const int BASE = 100000000,LEN = 8;
struct Bignum {
vector<int> v;
Bignum(int64 x = 0){
*this = x;
}
Bignum operator = (int64 x) {
v.clear();
do {
v.pb(x % BASE);
x /= BASE;
}while(x);
return *this;
}
Bignum operator = (const string &str) {
int x;
v.clear();
for(int i = str.length() ; i > 0 ; i -= LEN) {
int ed = i,st = max(i - LEN,0);
sscanf(str.substr(st,ed - st).c_str(),"%d",&x);
v.pb(x);
}
return *this;
}
friend Bignum operator * (const Bignum &a,const Bignum &b) {
Bignum c;c.v.clear();
for(int i = 1 ; i <= a.v.size() + b.v.size() ; ++i) c.v.pb(0);
for(int i = 0 ; i < a.v.size() ; ++i) {
int g = 0;
for(int j = 0 ; j < b.v.size() ; ++j) {
int64 x = 1LL * a.v[i] * b.v[j] + c.v[i + j] + g;
c.v[i + j] = x % BASE;
g = x / BASE;
}
int t = i + b.v.size();
while(g) {
int64 x = c.v[t] + g;
c.v[t] = x % BASE;
g = x / BASE;
++t;
}
}
for(int i = c.v.size() - 1 ; i > 0 ; --i) {
if(c.v[i] == 0) c.v.pop_back();
else break;
}
return c;
}
friend Bignum operator / (const Bignum &a,const int x) {
Bignum c;c.v.clear();
for(int i = 1 ; i <= a.v.size() ; ++i) c.v.pb(0);
int g = 0;
for(int i = a.v.size() - 1 ; i >= 0 ; --i) {
int64 y = 1LL * g * BASE + a.v[i];
c.v[i] = y / x;
g = y % x;
}
for(int i = c.v.size() - 1 ; i > 0 ; --i) {
if(c.v[i] == 0) c.v.pop_back();
else break;
}
return c;
}
friend bool operator < (const Bignum &a,const Bignum &b) {
if(a.v.size() < b.v.size()) return true;
else if(a.v.size() > b.v.size()) return false;
else {
for(int i = a.v.size() - 1 ; i >= 0 ; --i) {
if(a.v[i] < b.v[i]) return true;
else if(a.v[i] > b.v[i]) return false;
}
return false;
}
}
friend bool operator == (const Bignum &a,const Bignum &b) {
if(a.v.size() != b.v.size()) return false;
else {
for(int i = a.v.size() - 1 ; i >= 0 ; --i) {
if(a.v[i] != b.v[i]) return false;
}
return true;
}
}
friend bool operator > (const Bignum &a,const Bignum &b) {return b < a;}
friend bool operator != (const Bignum &a,const Bignum &b) {return !(a == b);}
friend bool operator <= (const Bignum &a,const Bignum &b) {return !(a > b);}
friend bool operator >= (const Bignum &a,const Bignum &b) {return !(a < b);}
void print() {
int s = v.size() - 1;
printf("%d",v[s]);
--s;
for(int i = s ; i >= 0 ; --i) {
printf("%08d",v[i]);
}
}
}N;
int T; bool nonprime[100005];
int prime[100005],cnt;
const int P = 85;
struct node {
Bignum num,val;
int cnt[P + 5];
node(Bignum _num = 0) {
num = _num;
memset(cnt,0,sizeof(cnt));
val = 1;
}
friend node operator * (const node &a,int x) {
node c;c.num = a.num * (Bignum)prime[x];
memcpy(c.cnt,a.cnt,sizeof(c.cnt));
c.cnt[x]++;
c.val = a.val / (a.cnt[x] + 1) * (a.cnt[x] + 2);
return c;
}
friend bool operator < (const node &a,const node &b) {
return a.num < b.num;
}
friend bool operator == (const node &a,const node &b) {
return a.num == b.num;
}
}ans[4005];
int tot = 0;
set<node> S;
void Solve() {
node p = node(1);
int c = 3810;
while(c--) {
ans[++tot] = p;
while(!S.empty()) {
node k = *S.begin();
if(k.val <= p.val) S.erase(S.begin());
else break;
}
S.insert(p * 1);
node k = *S.begin();
S.erase(S.begin());
for(int i = 2 ; i <= cnt ; ++i) {
node t = p * i;
if(t.val <= k.val) continue;
S.insert(t);
}
p = k;
}
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
for(int i = 2 ; i <= 10000 ; ++i) {
if(!nonprime[i]) {
prime[++cnt] = i;
if(cnt >= P) break;
for(int j = 2 ; j <= 10000 / i ; ++j) {
nonprime[i * j] = 1;
}
}
}
ios::sync_with_stdio(false);
Solve();
cin>>T;
string str;
while(T--) {
cin>>str;
N = str;
int L = 1,R = tot;
while(L < R) {
int MID = (L + R + 1) >> 1;
if(ans[MID].num <= N) L = MID;
else R = MID - 1;
}
ans[L].num.print();
putchar(' ');
ans[L].val.print();
putchar('\n');
}
return 0;
}

【51nod】1061 最复杂的数 V2的更多相关文章

  1. 51nod 1061 最复杂的数V2

    题目链接 51nod 1061 题面简述 求\([1, n]\)中约数个数最多的数. \(n \le 10^{200}\) 题解 首先,答案一定是一个反素数. 什么是反素数? 一个正整数\(x\)是反 ...

  2. 51Nod 1084:矩阵取数问题 V2(多维DP)

    1084 矩阵取数问题 V2  基准时间限制:2 秒 空间限制:131072 KB 分值: 80 难度:5级算法题  收藏  关注 一个M*N矩阵中有不同的正整数,经过这个格子,就能获得相应价值的奖励 ...

  3. 51nod 1218 最长递增子序列 V2——LIS+思路(套路)

    题目:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1218 自己怎么连这种 喜闻乐见的大水题 都做不出来了…… 好像见过 ...

  4. 51nod 1218 最长递增子序列 V2(dp + 思维)

    题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1218 题解:先要确定这些点是不是属于最长递增序列然后再确定这 ...

  5. 51nod 1053 最大M子段和 V2

    N个整数组成的序列a[1],a[2],a[3],…,a[n],将这N个数划分为互不相交的M个子段,并且这M个子段的和是最大的.如果M >= N个数中正数的个数,那么输出所有正数的和. 例如:-2 ...

  6. 51nod 1132 覆盖数字的数量 V2

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1132 题意是给定a,b,l,r求[l,r]内有几个整数可以表示成ax+b ...

  7. 51nod 1479 小Y的数论题

    一脸不可做题~~~233333 T<=100000,所以一定要logn出解啦. 但是完全没有头绪*&#……%*&……()……#¥*#@ 题解: 因为2^p+2^p=2^(p+1) ...

  8. 51nod 1060 最复杂的数

    把一个数的约数个数定义为该数的复杂程度,给出一个n,求1-n中复杂程度最高的那个数.   例如:12的约数为:1 2 3 4 6 12,共6个数,所以12的复杂程度是6.如果有多个数复杂度相等,输出最 ...

  9. 51nod 1060 最复杂的数 反素数

    1060 最复杂的数 基准时间限制:1 秒 空间限制:131072 KB 把一个数的约数个数定义为该数的复杂程度,给出一个n,求1-n中复杂程度最高的那个数. 例如:12的约数为:1 2 3 4 6 ...

随机推荐

  1. Hadoop生态圈-phoenix(HBase)的索引配置

    Hadoop生态圈-phoenix(HBase)的索引配置 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 创建索引是为了优化查询,我们可以在phoenix上配置索引方式. 一.修改 ...

  2. js判断当前浏览器是pc端还是移动端

    根据用户的访问设备的不同来显示不同的页面样式,主要是判断移动设备还是电脑浏览器访问的. 下面给出js判断处理代码,以作参考. <script type="text/javascript ...

  3. bzoj千题计划150:bzoj2738: 矩阵乘法

    http://www.lydsy.com/JudgeOnline/problem.php?id=2738 整体二分 二维树状数组累积 #include<cstdio> #include&l ...

  4. 2008ZJOI树的统计

    codevs 2460 树的统计 http://codevs.cn/problem/2460/ 2008年省队选拔赛浙江  题目等级 : 大师 Master   题目描述 Description 一棵 ...

  5. Mac下配置环境变量(转)

    说明:Mac下一般使用bash作为默认shell 一.Mac系统的环境变量,加载顺序为: /etc/profile /etc/paths ~/.bash_profile ~/.bash_login ~ ...

  6. [转载]代码编辑器Sublime Text 3 免费使用方法与简体中文汉化包下载

    http://devework.com/sublime-text-3.html Sublime Text这款代码编辑器是Jeff 一直都在使用的,前段时间转用到版本3,因为感觉Sublime Text ...

  7. 差分约束系统+输出路径(I - Advertisement POJ - 1752 )

    题目链接:https://cn.vjudge.net/contest/276233#problem/I 题目大意:输入k和n,然后输入n行,每一次输入两个数,代表开端和结尾,如果这个区间内点的个数大于 ...

  8. 网络流最大流(拆点)(附带kuangbin最大流模板)(目测这个题有bug)

    题目链接:https://vjudge.net/contest/68128#problem/H 我觉得这个题有bug,如果饮料和食物都为0,但是同时有五个人什么也不需要,按道理来讲,最多受益的人数为5 ...

  9. C++ Primer 5th 第14章 重载运算与类型转换

    当运算符作用域类类型的对象时,可以通过运算符重载来重新定义该运算符的含义.重载运算符的意义在于我们和用户能够更简洁的书写和更方便的使用代码. 基本概念 重载的运算符是具有特殊名字的函数:函数名由关键词 ...

  10. js数组排序 reverse()和sort()方法的使用

    WEB前端|js数组排序reverse()和sort()方法的使用,数组中已经存在两个可以直接用来重排序的方法:reverse()和sort(). reverse()方法会对反转数组项的顺序. var ...