都是泪呀。。。↑

题目传送门

题意(直接复制了QWQ)

题目描述

给定由非负整数组成的\(n \times n\)的正方形矩阵,你需要寻找一条路径:

以左上角为起点,

每次只能向右或向下走,

以右下角为终点 并且,如果我们把沿路遇到的数进行相乘,积应当是最小“round”,换句话说,应当以最小数目的0的结尾.

输入格式

第一行包含一个整数 \((2 \leq n \leq 1000)\),\(n\)为矩阵的规模,接下来的\(n\)行包含矩阵的元素(不超过\(10^9\)的非负整数).

输出格式

第一行应包含最小尾0的个数,第二行打印出相应的路径(译注:D为下,R为右)

思路

楼下其实说得蛮清楚了,我主要就是说一下坑。。。

构成末尾是0的只能是\(2^a\)与\(5^b\)相乘,所得的0的个数为\(min(a,b)\),所以,只要2、5分别dp一遍,取一下上与左的最小值就好啦。。。最后求路径时递归求一遍就好啦。。。

TLE的小朋友们看这里啦。。。

TLE的小朋友们看这里啦。。。

TLE的小朋友们看这里啦。。。

(重要的事情说三遍)

此题特别会卡时。

比如说一开始预处理每个数是\(2^a\)与\(2^b\)时,需要将此数不间断地除下去,为什么呢?因为卡常数。。。也许时我RP的原因吧。。。卡了半天,终于卡过去了。。。

具体详见代码:

代码

(我知道你要看这个)

#include<bits/stdc++.h>
using namespace std;//奇丑无比的码风
int n,a[1010][1010],f[2][1010][1010],dp[2][1010][1010];
int ans,qx,qy;
bool ff;
inline int get2(register int x,register int y){
if(a[x][y]==0){return 0;} //特判
register int pt=0;
while(a[x][y]%2==0) ++pt,a[x][y]/=2; //卡常数
return pt;
}
inline int get5(register int x,register int y){
if(a[x][y]==0){return 0;} //特判
register int pt=0;
while(a[x][y]%5==0) ++pt,a[x][y]/=5; //卡常数
return pt;
}
inline void print(register int k,register int x,register int y,register int first){
if(x==1&&y==1) ;
else if(x==1) print(k,x,y-1,0);
else if(y==1) print(k,x-1,y,1);
else if(dp[k][x][y]==dp[k][x-1][y]+f[k][x][y]) print(k,x-1,y,1);
else print(k,x,y-1,0);
if(first==6666) return ;
putchar(first==0?'R':'D'); //一开始在n,n点时不需要输出
return ;
}
int main(){
while(cin>>n){
ff=0;qx=0;qy=0;
for(register int i=1;i<=n;i++){
for(register int j=1;j<=n;j++){
cin>>a[i][j];
if(a[i][j]==0){
qx=i;qy=j;
ff=1;
}
}
}
for(register int i=1;i<=n;i++){
for(register int j=1;j<=n;j++){
f[0][i][j]=get2(i,j);
f[1][i][j]=get5(i,j);
}
}
memset(dp,63,sizeof(dp));
for(register int i=1;i<=n;i++)
for(register int j=1;j<=n;j++){
dp[0][i][j]=min(dp[0][i][j],dp[0][i-1][j]);
dp[0][i][j]=min(dp[0][i][j],dp[0][i][j-1]);//从左格子与上格子中取最小值
if(i==1&&j==1) dp[0][i][j]=0;
dp[0][i][j]+=f[0][i][j];
}
for(register int i=1;i<=n;i++)
for(register int j=1;j<=n;j++){
dp[1][i][j]=min(dp[1][i][j],dp[1][i-1][j]);
dp[1][i][j]=min(dp[1][i][j],dp[1][i][j-1]);//从左格子与上格子中取最小值
if(i==1&&j==1) dp[1][i][j]=0;
dp[1][i][j]+=f[1][i][j];
}
ans=min(dp[0][n][n],dp[1][n][n]);//初步ans
if(ans>1&&ff==1){ //特判有0的情况,如果有0,那么答案只有0或1.
putchar('1');
putchar('\n');
for(register int i=1;i<qx;i++) putchar('D');
for(register int i=1;i<qy;i++) putchar('R');
for(register int i=qx;i<n;i++) putchar('D');
for(register int i=qy;i<n;i++) putchar('R');
putchar('\n');
}else{
cout<<ans;
putchar('\n');
if(dp[0][n][n]<dp[1][n][n]) print(0,n,n,6666); //分2、5讨论
else print(1,n,n,6666);
putchar('\n');
}
}
return 0;
}

CF2B The least round way 题解的更多相关文章

  1. Codeforces Round #556 题解

    Codeforces Round #556 题解 Div.2 A Stock Arbitraging 傻逼题 Div.2 B Tiling Challenge 傻逼题 Div.1 A Prefix S ...

  2. LibreOJ β Round #2 题解

    LibreOJ β Round #2 题解 模拟只会猜题意 题目: 给定一个长为 \(n\) 的序列,有 \(m\) 次询问,每次问所有长度大于 \(x\) 的区间的元素和的最大值. \(1 \leq ...

  3. Codeforces Round #569 题解

    Codeforces Round #569 题解 CF1179A Valeriy and Deque 有一个双端队列,每次取队首两个值,将较小值移动到队尾,较大值位置不变.多组询问求第\(m\)次操作 ...

  4. Codeforces Round #557 题解【更完了】

    Codeforces Round #557 题解 掉分快乐 CF1161A Hide and Seek Alice和Bob在玩捉♂迷♂藏,有\(n\)个格子,Bob会检查\(k\)次,第\(i\)次检 ...

  5. CF2B The least round way(贪心+动规)

    题目 CF2B The least round way 做法 后面\(0\)的个数,\(2\)和\(5\)是\(10\)分解质因数 则把方格中的每个数分解成\(2\)和\(5\),对\(2\)和\(5 ...

  6. CFEducational Codeforces Round 66题解报告

    CFEducational Codeforces Round 66题解报告 感觉丧失了唯一一次能在CF上超过wqy的机会QAQ A 不管 B 不能直接累计乘法打\(tag\),要直接跳 C 考虑二分第 ...

  7. Google kickstart 2022 Round A题解

    Speed Typing 题意概述 给出两个字符串I和P,问能否通过删除P中若干个字符得到I?如果能的话,需要删除字符的个数是多少? 数据规模 \[1≤|I|,|P|≤10^5 \] 双指针 设置两个 ...

  8. Codeforces Beta Round #62 题解【ABCD】

    Codeforces Beta Round #62 A Irrational problem 题意 f(x) = x mod p1 mod p2 mod p3 mod p4 问你[a,b]中有多少个数 ...

  9. “玲珑杯”ACM比赛 Round #12题解&源码

    我能说我比较傻么!就只能做一道签到题,没办法,我就先写下A题的题解&源码吧,日后补上剩余题的题解&源码吧!                                     A ...

随机推荐

  1. Codeforces 804D Expected diameter of a tree

    D. Expected diameter of a tree time limit per test 3 seconds memory limit per test 256 megabytes inp ...

  2. JDBC编程扩展

    数据库的分类:关系型数据库.非关系型数据库.这跟数据库的发展相关.关系型数据库:mysql.oracle.sqlserver非关系型数据库:redis.memcathe.mogodb.hadoop1. ...

  3. codevs 3235 战争

    3235 战争 http://codevs.cn/problem/3235/  时间限制: 2 s  空间限制: 128000 KB   题目描述 Description 2050年,人类与外星人之间 ...

  4. bzoj 3309 反演

    $n=p_1^{a_1}p_2^{a_2}…p_k^{a_k},p_i$为素数,定义$f(n)=max(a_1,a_2…,a_k)$. 给定a,b<=1e7求$\sum\limits_{i=1} ...

  5. 【转】Ubuntu+apache绑定多个域名

    1. 将 http://www.a.com 与 http://www.b.com 的DNS解析到你的服务器IP上. 2. 删除apache的默认主机配置文件.你也不希望创建2个虚拟主机后人家还能直接访 ...

  6. 蓝桥杯 算法提高 3000米排名预测 DFS 递归搜索 next_permutation()使用

    #include <iostream> #include <algorithm> #include <queue> #include <cstring> ...

  7. SourceTree免密克隆仓库及问题说明

    前言说明: 公司陆陆续续进新员工,新员工都需要了解公司各类资料,而公司资料都存储于gitlab中,因此,新员工需要安装工具进行资料拉取. 公司采用SourceTree的是工具.相关下载地址如下: WI ...

  8. 【学习DIV+CSS】2. 学习CSS(一)--CSS控制页面样式

    1. CSS如何控制页面 使用XHTML+CSS布局页面,其中有一个很重要的特点就是“结构与表现相分离”(结构指XHTML,表现指CSS).有人这样描述这种分离的关系,结构XHTML好比一个人,表现C ...

  9. Hive笔记之导出查询结果

    一.导出到本地 导出查询结果到本地: INSERT OVERWRITE LOCAL DIRECTORY "/tmp/hive-result/t_visit_video" SELEC ...

  10. JS简介——(一)

    0.结构