【刷题】BZOJ 1458 士兵占领
Description
有一个M * N的棋盘,有的格子是障碍。现在你要选择一些格子来放置一些士兵,一个格子里最多可以放置一个士兵,障碍格里不能放置士兵。我们称这些士兵占领了整个棋盘当满足第i行至少放置了Li个士兵, 第j列至少放置了Cj个士兵。现在你的任务是要求使用最少个数的士兵来占领整个棋盘。
Input
第一行两个数M, N, K分别表示棋盘的行数,列数以及障碍的个数。 第二行有M个数表示Li。 第三行有N个数表示Ci。 接下来有K行,每行两个数X, Y表示(X, Y)这个格子是障碍。
Output
输出一个数表示最少需要使用的士兵个数。如果无论放置多少个士兵都没有办法占领整个棋盘,输出”JIONG!” (不含引号)
Sample Input
4 4 4
1 1 1 1
0 1 0 3
1 4
2 2
3 3
4 3
Sample Output
4
数据范围
M, N <= 100, 0 <= K <= M * N
Solution
这题是自己想了个麻烦一点,慢了一点的算法,但是思路特简单
一行一列只能有一个,套路,行列连边
超级源点向所有行连边,流量为行上需要布满的士兵,费用为 \(0\)
所有列向超级汇点连边,流量为列上需要布满的士兵,费用为 \(0\)
如果某个位置没有障碍,那么将它的行列连边,流量为 \(1\) ,费用为 \(1\)
跑费用流
然后判断源点连出的和流向汇点的边是否满流,满了就是满足行列限制了,否则无解
有解的话输出费用
#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXN=200+10,MAXM=MAXN*MAXN+10,inf=0x3f3f3f3f;
int n,m,k,e=1,clk,s,t,answas,beg[MAXN],cur[MAXN],level[MAXN],p[MAXN],vis[MAXN],G[MAXN][MAXN],to[MAXM<<1],nex[MAXM<<1],cap[MAXM<<1],was[MAXM<<1],out[MAXM<<1];
std::queue<int> q;
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline void insert(int x,int y,int z,int w)
{
to[++e]=y;
nex[e]=beg[x];
out[e]=x;
beg[x]=e;
cap[e]=z;
was[e]=w;
to[++e]=x;
nex[e]=beg[y];
out[e]=y;
beg[y]=e;
cap[e]=0;
was[e]=-w;
}
inline bool bfs()
{
memset(level,inf,sizeof(level));
level[s]=0;
p[s]=1;
q.push(s);
while(!q.empty())
{
int x=q.front();
q.pop();
p[x]=0;
for(register int i=beg[x];i;i=nex[i])
if(cap[i]&&level[to[i]]>level[x]+was[i])
{
level[to[i]]=level[x]+was[i];
if(!p[to[i]])p[to[i]]=1,q.push(to[i]);
}
}
return level[t]!=inf;
}
inline int dfs(int x,int maxflow)
{
if(x==t||!maxflow)return maxflow;
vis[x]=clk;
int res=0;
for(register int &i=cur[x];i;i=nex[i])
if((vis[x]^vis[to[i]])&&cap[i]&&level[to[i]]==level[x]+was[i])
{
int f=dfs(to[i],min(maxflow,cap[i]));
res+=f;
cap[i]-=f;
cap[i^1]+=f;
answas+=f*was[i];
maxflow-=f;
if(!maxflow)break;
}
return res;
}
inline void MCMF()
{
while(bfs())clk++,memcpy(cur,beg,sizeof(cur)),dfs(s,inf);
}
int main()
{
read(n);read(m);read(k);
s=n+m+1,t=s+1;
for(register int i=1,x;i<=n;++i)read(x),insert(s,i,x,0);
for(register int i=1,x;i<=m;++i)read(x),insert(i+n,t,x,0);
while(k--)
{
int x,y;read(x);read(y);
G[x][y]=1;
}
for(register int i=1;i<=n;++i)
for(register int j=1;j<=m;++j)
if(!G[i][j])insert(i,j+n,1,1);
MCMF();
for(register int i=2;i<=e;i+=2)
if((out[i]==s||to[i]==t)&&cap[i])
{
puts("JIONG");
return 0;
}
write(answas,'\n');
return 0;
}
【刷题】BZOJ 1458 士兵占领的更多相关文章
- BZOJ 1458: 士兵占领( 网络流 )
先判无解 把整个棋盘都放上士兵, 只需求最多可以拿走多少个士兵即可.每一行看做一个点r(i), 每一列看做一个点c(i) S->r(i), c(i)->T 连边, 容量为可以拿走的最大士兵 ...
- bzoj 1458: 士兵占领 -- 最大流
1458: 士兵占领 Time Limit: 10 Sec Memory Limit: 64 MB Description 有一个M * N的棋盘,有的格子是障碍.现在你要选择一些格子来放置一些士兵 ...
- BZOJ 1458 士兵占领
http://www.lydsy.com/JudgeOnline/problem.php?id=1458 题意:n x m的棋盘,k个位置不能放,每行和每列都有要求至少的士兵,求能否有最少的满足条件的 ...
- bzoj 1458 士兵占领(最大流)
[题意] n行m列,第i行必须放L[i],第j列必须放C[j],有障碍格,求满足条件至少需要放多少. [思路] 至少放多少等价于最多不放多少. 对行列分别建XY点,则连边(S,Xi,a)(Yi,T,b ...
- 【BZOJ】1458: 士兵占领(上下界网络流)
http://www.lydsy.com/JudgeOnline/problem.php?id=1458 是不是我脑洞太小了.......直接弄上下界最小流........(就当复习了.. 二分图X和 ...
- 1458: 士兵占领 - BZOJ
Description 有一个M * N的棋盘,有的格子是障碍.现在你要选择一些格子来放置一些士兵,一个格子里最多可以放置一个士兵,障碍格里不能放置士兵.我们称这些士兵占领了整个棋盘当满足第i行至少放 ...
- 【BZOJ-1458】士兵占领 最大流
1458: 士兵占领 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 782 Solved: 456[Submit][Status][Discuss] ...
- 【刷题】BZOJ 2407 探险
Description 探险家小T好高兴!X国要举办一次溶洞探险比赛,获奖者将得到丰厚奖品哦!小T虽然对奖品不感兴趣,但是这个大振名声的机会当然不能错过! 比赛即将开始,工作人员说明了这次比赛的规则: ...
- 【刷题】BZOJ 4543 [POI2014]Hotel加强版
Description 同OJ3522 数据范围:n<=100000 Solution dp的设计见[刷题]BZOJ 3522 [Poi2014]Hotel 然后发现dp的第二维与深度有关,于是 ...
随机推荐
- python包管理工具pip
你可以使用一个名为 pip 的程序来安装.升级和移除软件包.默认情况下 pip 将从 Python Package Index <https://pypi.org> 安装软件包.你可以在浏 ...
- 学习python最难的就是入门,而这文章刚好适合初学者!
Python可以应用于众多领域,如:数据分析.组件集成.网络服务.图像处理.数值计算和科学计算等众多领域.目前业内几乎所有大中型互联网企业都在使用Python,如:Youtube.Dropbox.BT ...
- Netty源码分析第1章(Netty启动流程)---->第2节: NioServerSocketChannel的创建
Netty源码分析第一章: Server启动流程 第二节:NioServerSocketChannel的创建 我们如果熟悉Nio, 则对channel的概念则不会陌生, channel在相当于一个通 ...
- Netty源码分析第1章(Netty启动流程)---->第4节: 注册多路复用
Netty源码分析第一章:Netty启动流程 第四节:注册多路复用 回顾下以上的小节, 我们知道了channel的的创建和初始化过程, 那么channel是如何注册到selector中的呢?我们继 ...
- k8s环境搭建--基于minik8s方法
minik8s 安装 关闭selinux.开启ipv6 sudo bash selinux_ipv6.sh 下载kubectl和minikube 下载minikube,因为国外的源被墙了,所以只能用阿 ...
- Linux 磁盘与文件系统(EXT2)简介
Linux 中,一切(或几乎一切)都是文件. 一.Linux 磁盘分区与文件系统 1.1 磁盘分区 磁盘的分区主要分为主分区和扩展分区 1)主分区:总共最多只能有四个主分区: 2)扩展分区:只能有一个 ...
- python os.walk详解
os模块大全详情 os.walkos.walk方法,主要用来遍历一个目录内各个子目录和子文件. os.walk(top, topdown=True, onerror=None, followlinks ...
- chage命令详解
基础命令学习目录首页 原文链接:https://www.jb51.net/article/78693.htm linux chage命令简介: chage命令用于密码实效管理,该是用来修改帐号和密码的 ...
- Centos7.2构建Python3.6开发环境
1.安装python3.6 1.这里使用一台全新的腾讯云主机,首先获取linux系统版本信息. [root@VM_46_121_centos ~]# cat /etc/redhat-release C ...
- Daily Scrum (2015/10/25)
今天终于到了周末的尾声,我们的组员也应该正常得投入到工作中了.这天晚上我(符美潇)和PM(潘礼鹏)和两个DEV开了一个小会,讨论一下我们本周的代码编写工作.我们了解到大家的代码阅读工作和相关知识的学习 ...