题目描述

由于出题人懒得写背景了,题目还是简单一点好。

输入一个整数n和一个整数p,你需要求出(\(\sum_{i=1}^n\sum_{j=1}^n ijgcd(i,j))~mod~p\),其中gcd(a,b)表示a与b的最大公约数。

输入输出格式

输入格式:

一行两个整数p、n。

输出格式:

一行一个整数(\(\sum_{i=1}^n\sum_{j=1}^n ijgcd(i,j))~mod~p\)。

输入输出样例

输入样例#1:

998244353 2000

输出样例#1:

883968974

说明

对于20%的数据,\(n \leq 1000\)。

对于30%的数据,\(n \leq 5000\)。

对于60%的数据,\(n\leq 10^6\),时限1s。

对于另外20%的数据,\(n\leq 10^9\),时限3s。

对于最后20%的数据,\(n \leq 10^{10}\),时限6s。

对于100%的数据,\(5 \times 10^8 \leq p \leq 1.1 \times 10^9\)且p为质数。

题解

同样的莫比乌斯反演,加上杜教筛

\[ans=\sum_{i=1}^n\sum_{j=1}^nij\cdot gcd(i,j) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\]

\[=\sum_{d=1}^n\sum_{i=1}^{\lfloor \frac{n}{i} \rfloor}\sum_{j=1}^{\lfloor \frac{n}{i} \rfloor}di\cdot dj\cdot d[gcd(i,j)=1]\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\]

\[=\sum_{d=1}^nd^3\sum_{i=1}^{\lfloor \frac{n}{i} \rfloor}\sum_{j=1}^{\lfloor \frac{n}{i} \rfloor}ij[gcd(i,j)=1]\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\]

\[=\sum_{d=1}^nd^3\sum_{i=1}^{\lfloor \frac{n}{d} \rfloor}\mu(i)\cdot i^2\cdot s(\lfloor \frac{n}{id} \rfloor)\ \ \ (s(n)=(\frac{n*(n+1)}{2})^2)
\]

\[=\sum_{T=1}^ns(\lfloor \frac{n}{T} \rfloor)\sum_{d|T}d^3\cdot \mu(\frac{T}{d})\cdot (\frac{T}{d})^2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\]

\[=\sum_{T=1}^ns(\lfloor \frac{n}{T} \rfloor)T^2\sum_{d|T}d\cdot \mu(\frac{T}{d})\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\]

\[=\sum_{T=1}^ns(\lfloor \frac{n}{T} \rfloor)T^2\varphi(T)\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\]

最后一步与欧拉函数有关,也与卷积有关

对于前面\(\sum_{T=1}^ns(\lfloor \frac{n}{T} \rfloor)\)可以整除分块,我们考虑后面部分的前缀和

设\(S(n)=\sum_{i=1}^ni^2\varphi(i)\)

然后上杜教筛

\[S(n)=\sum_{i=1}^ni^2\varphi(i)=\sum_{i=1}^ni^2(\sum_{d|i}\varphi(d)-\sum_{d|i,d\ne i}\varphi(d))
\]

\[=\sum_{i=1}^ni^2\sum_{d|i}\varphi(d)-\sum_{i=1}^ni^2\sum_{d|i,d\ne i}\varphi(d)\ \ \ \ \
\]

\[=\sum_{i=1}^ni^3-\sum_{i=1}^n\sum_{d|i,d\ne i}i^2\varphi(d)\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\]

\[=\sum_{i=1}^ni^3-\sum_{\frac{i}{d}=2}^n\sum_{\frac{i}{d}|i}^ni^2\varphi(d)\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\]

\[=\sum_{i=1}^ni^3-\sum_{x=2}^n\sum_{x|xd}^n(xd)^2\varphi(d)\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\]

\[=\sum_{i=1}^ni^3-\sum_{x=2}^n\sum_{d=1}^{\lfloor \frac{n}{x} \rfloor}x^2d^2\varphi(d)\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\]

\[=\sum_{i=1}^ni^3-\sum_{x=2}^nx^2\sum_{d=1}^{\lfloor \frac{n}{x} \rfloor}d^2\varphi(d)\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\]

\[=\sum_{i=1}^ni^3-\sum_{x=2}^nx^2S(\lfloor \frac{n}{x} \rfloor)\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\]

成功杜教筛,复杂度\(O(n^\frac{2}{3})\)?

先预处理前\(1e7\)项,后面的用杜教筛的式子求

\[ans=\sum_{T=1}^ns(\lfloor \frac{n}{T} \rfloor )S(T)
\]

整除分块了,杜教筛了,然后就过了

这一题涉及了欧拉函数和卷积,但这些还没学通,式子中有些东西是强背的

以后还会系统地学

在代码实现的过程中用到了平方与立方数列求和公式,不然复杂度不对,详细公式可以见这里(以前从未听说过这么强的公式。。。)

#include<bits/stdc++.h>
#define ll long long
#define db double
#define ld long double
const int MAXN=1000000+10;
int Mod,cnt,prime[MAXN],vis[MAXN];
ll phi[MAXN],f[MAXN],six,two;
std::map<ll,ll> M;
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char c='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(c!='\0')putchar(c);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline ll qexp(ll a,ll b)
{
ll res=1;
while(b)
{
if(b&1)res=res*a%Mod;
a=a*a%Mod;
b>>=1;
}
return res;
}
inline void init()
{
two=qexp(2,Mod-2);
six=qexp(6,Mod-2);
memset(vis,1,sizeof(vis));
vis[0]=vis[1]=0;
phi[1]=1;
for(register int i=2;i<MAXN;++i)
{
if(vis[i])
{
prime[++cnt]=i;
phi[i]=i-1;
}
for(register int j=1;j<=cnt&&i*prime[j]<MAXN;++j)
{
vis[i*prime[j]]=0;
if(i%prime[j])phi[i*prime[j]]=phi[i]*phi[prime[j]]%Mod;
else
{
phi[i*prime[j]]=phi[i]*(ll)prime[j]%Mod;
break;
}
}
}
for(register ll i=1;i<MAXN;++i)f[i]=(f[i-1]+i*i%Mod*phi[i]%Mod)%Mod;
}
inline ll s3(ll x)
{
x%=Mod;
ll res=x*(x+1)%Mod*two%Mod;
return res*res%Mod;
}
inline ll s2(ll x)
{
x%=Mod;
return x*(x+1)%Mod*(x+x+1)%Mod*six%Mod;
}
inline ll Phis(ll x)
{
if(x<MAXN)return f[x];
if(M[x])return M[x];
ll res=s3(x);
for(register ll i=2;;)
{
if(i>x)break;
ll j=x/(x/i);
(res-=Phis(x/i)*(s2(j)-s2(i-1))%Mod)%=Mod;
i=j+1;
}
return M[x]=(res+Mod)%Mod;
}
inline ll solve(ll n)
{
ll res=0;
for(register ll i=1;;)
{
if(i>n)break;
ll j=n/(n/i);
(res+=s3(n/i)*(Phis(j)-Phis(i-1))%Mod)%=Mod;
i=j+1;
}
return (res+Mod)%Mod;
}
int main()
{
ll n;
read(Mod);read(n);
init();
write(solve(n),'\n');
return 0;
}

【刷题】洛谷 P3768 简单的数学题的更多相关文章

  1. 洛谷 P3768 简单的数学题 解题报告

    P3768 简单的数学题 题目描述 由于出题人懒得写背景了,题目还是简单一点好. 输入一个整数\(n\)和一个整数\(p,\)你需要求出\((\sum_{i=1}^n\sum_{j=1}^n ijgc ...

  2. 洛谷 - P3768 - 简单的数学题 - 欧拉函数 - 莫比乌斯反演

    https://www.luogu.org/problemnew/show/P3768 \(F(n)=\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{n}ijgcd(i ...

  3. 洛谷 P3768 简单的数学题

    https://www.luogu.org/problemnew/show/P3768 化简一下式子,就是$\sum_{d=1}^ncalc(d)d^2\varphi(d)$ 其中$calc(d)=\ ...

  4. 洛谷P3768 简单的数学题 莫比乌斯反演+杜教筛

    题意简述 求出这个式子 \[ \sum_{i=1}^n\sum_{j=1}^n ij(i,j) \bmod p \] 做法 先用莫比乌斯反演拆一下式子 \[ \begin{split} \sum_{i ...

  5. 洛谷P3768 简单的数学题

    解: 神奇的一批......参观yyb巨神的博客. 大致思路就是第一步枚举gcd,发现后面有个限制是gcd=1,用反演,得到的F(x)是两个等差数列求积. 然后发现有个地方我们除法的除数是乘积,于是换 ...

  6. 洛谷P3768 简单的数学题(莫比乌斯反演+狄利克雷卷积+杜教筛)

    传送门 不会…… 两篇加在一起都看不懂…… https://www.cnblogs.com/cellular-automaton/p/8241128.html https://www.luogu.or ...

  7. 洛谷P3768 简单的数学题 【莫比乌斯反演 + 杜教筛】

    题目描述 求 \[\sum\limits_{i=1}^{n} \sum\limits_{j=1}^{n} i*j*gcd(i,j) \pmod{p}\] \(n<=10^{10}\),\(p\) ...

  8. 洛谷 P3768 简单的数学题 (莫比乌斯反演)

    题意:求$(\sum_{i=1}^{n}\sum_{j=1}^{n}ijgcd(i,j))mod p$(p为质数,n<=1e10) 很显然,推式子. $\sum_{i=1}^{n}\sum_{j ...

  9. 洛谷P3768 简单的数学题解题报告

    $$\begin{eqnarray}&\sum_{i=1}^{n}\sum_{j=1}^{n}ij\gcd(i,j)\\&\sum_{d=1}^{n}\sum_{i=1}^{n}\su ...

随机推荐

  1. Unity生成简易二维码

    最近项目需求,需要在Unity中动态生成二维码.所以就研究了一下,下面把动态生成二维码的方法向大家分享一下. 第一种方法 需要一个 ZXing.dll文件. 下载地址我会在文章结尾给出. 直接将下载好 ...

  2. 【LeetCode算法题库】Day2:Median of Two Sorted Arrays & Longest Palindromic Substring & ZigZag Conversion

    [Q4] There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of th ...

  3. 0.3 CMD常用命令!以及用CMD显得自己高大上

    CMD是大家熟知的Windows命令提示符(cmd.exe),它是 Windows NT 下的一个用于运行 Windows 控制面板程序或某些 DOS 程序的shell程序. CMD命令快捷键是:wi ...

  4. 【深度学习的实用层面】(一)训练,验证,测试集(Train/Dev/Test sets)

    在配置训练.验证.和测试数据集的过程中做出正确的决策会更好地创建高效的神经网络,所以需要对这三个名词有一个清晰的认识. 训练集:用来训练模型 验证集:用于调整模型的超参数,验证不同算法,检验哪种算法更 ...

  5. xlutils模块使用

    python常用模块目录 1.xlutils 实现拷贝原文件 原表格: import xlrd from xlutils.copy import copy workbook = xlrd.open_w ...

  6. [译文]c#扩展方法(Extension Method In C#)

    原文链接: https://www.codeproject.com/Tips/709310/Extension-Method-In-Csharp 介绍 扩展方法是C# 3.0引入的新特性.扩展方法使你 ...

  7. js给节点添加或删除类名

    为 <div> 元素添加 class: document.getElementById(“myDIV”).classList.add(“mystyle”); 为 <div> 元 ...

  8. 20162314 《Program Design & Data Structures》Learning Summary Of The Seventh Week

    20162314 2017-2018-1 <Program Design & Data Structures>Learning Summary Of The Seventh Wee ...

  9. 初学Cocos2dx

    初学cocos2dx Cocos2dx 中的主要概念包括:应用.导演.场景.层.精灵.动画.动作. Cocos2dx里面的主要类 1.CCObject Object Object Object 是co ...

  10. 听说 —— beta冲刺总结

    听说 -- beta冲刺总结 beta冲刺成员名单 姓名 学号 负责方向 个人主页 周龙荣 031402543 前端页面.跳转 http://www.cnblogs.com/ZHOULR/ 李家鹏 0 ...