题目描述

由于出题人懒得写背景了,题目还是简单一点好。

输入一个整数n和一个整数p,你需要求出(\(\sum_{i=1}^n\sum_{j=1}^n ijgcd(i,j))~mod~p\),其中gcd(a,b)表示a与b的最大公约数。

输入输出格式

输入格式:

一行两个整数p、n。

输出格式:

一行一个整数(\(\sum_{i=1}^n\sum_{j=1}^n ijgcd(i,j))~mod~p\)。

输入输出样例

输入样例#1:

998244353 2000

输出样例#1:

883968974

说明

对于20%的数据,\(n \leq 1000\)。

对于30%的数据,\(n \leq 5000\)。

对于60%的数据,\(n\leq 10^6\),时限1s。

对于另外20%的数据,\(n\leq 10^9\),时限3s。

对于最后20%的数据,\(n \leq 10^{10}\),时限6s。

对于100%的数据,\(5 \times 10^8 \leq p \leq 1.1 \times 10^9\)且p为质数。

题解

同样的莫比乌斯反演,加上杜教筛

\[ans=\sum_{i=1}^n\sum_{j=1}^nij\cdot gcd(i,j) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\]

\[=\sum_{d=1}^n\sum_{i=1}^{\lfloor \frac{n}{i} \rfloor}\sum_{j=1}^{\lfloor \frac{n}{i} \rfloor}di\cdot dj\cdot d[gcd(i,j)=1]\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\]

\[=\sum_{d=1}^nd^3\sum_{i=1}^{\lfloor \frac{n}{i} \rfloor}\sum_{j=1}^{\lfloor \frac{n}{i} \rfloor}ij[gcd(i,j)=1]\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\]

\[=\sum_{d=1}^nd^3\sum_{i=1}^{\lfloor \frac{n}{d} \rfloor}\mu(i)\cdot i^2\cdot s(\lfloor \frac{n}{id} \rfloor)\ \ \ (s(n)=(\frac{n*(n+1)}{2})^2)
\]

\[=\sum_{T=1}^ns(\lfloor \frac{n}{T} \rfloor)\sum_{d|T}d^3\cdot \mu(\frac{T}{d})\cdot (\frac{T}{d})^2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\]

\[=\sum_{T=1}^ns(\lfloor \frac{n}{T} \rfloor)T^2\sum_{d|T}d\cdot \mu(\frac{T}{d})\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\]

\[=\sum_{T=1}^ns(\lfloor \frac{n}{T} \rfloor)T^2\varphi(T)\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\]

最后一步与欧拉函数有关,也与卷积有关

对于前面\(\sum_{T=1}^ns(\lfloor \frac{n}{T} \rfloor)\)可以整除分块,我们考虑后面部分的前缀和

设\(S(n)=\sum_{i=1}^ni^2\varphi(i)\)

然后上杜教筛

\[S(n)=\sum_{i=1}^ni^2\varphi(i)=\sum_{i=1}^ni^2(\sum_{d|i}\varphi(d)-\sum_{d|i,d\ne i}\varphi(d))
\]

\[=\sum_{i=1}^ni^2\sum_{d|i}\varphi(d)-\sum_{i=1}^ni^2\sum_{d|i,d\ne i}\varphi(d)\ \ \ \ \
\]

\[=\sum_{i=1}^ni^3-\sum_{i=1}^n\sum_{d|i,d\ne i}i^2\varphi(d)\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\]

\[=\sum_{i=1}^ni^3-\sum_{\frac{i}{d}=2}^n\sum_{\frac{i}{d}|i}^ni^2\varphi(d)\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\]

\[=\sum_{i=1}^ni^3-\sum_{x=2}^n\sum_{x|xd}^n(xd)^2\varphi(d)\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\]

\[=\sum_{i=1}^ni^3-\sum_{x=2}^n\sum_{d=1}^{\lfloor \frac{n}{x} \rfloor}x^2d^2\varphi(d)\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\]

\[=\sum_{i=1}^ni^3-\sum_{x=2}^nx^2\sum_{d=1}^{\lfloor \frac{n}{x} \rfloor}d^2\varphi(d)\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\]

\[=\sum_{i=1}^ni^3-\sum_{x=2}^nx^2S(\lfloor \frac{n}{x} \rfloor)\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\]

成功杜教筛,复杂度\(O(n^\frac{2}{3})\)?

先预处理前\(1e7\)项,后面的用杜教筛的式子求

\[ans=\sum_{T=1}^ns(\lfloor \frac{n}{T} \rfloor )S(T)
\]

整除分块了,杜教筛了,然后就过了

这一题涉及了欧拉函数和卷积,但这些还没学通,式子中有些东西是强背的

以后还会系统地学

在代码实现的过程中用到了平方与立方数列求和公式,不然复杂度不对,详细公式可以见这里(以前从未听说过这么强的公式。。。)

#include<bits/stdc++.h>
#define ll long long
#define db double
#define ld long double
const int MAXN=1000000+10;
int Mod,cnt,prime[MAXN],vis[MAXN];
ll phi[MAXN],f[MAXN],six,two;
std::map<ll,ll> M;
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char c='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(c!='\0')putchar(c);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline ll qexp(ll a,ll b)
{
ll res=1;
while(b)
{
if(b&1)res=res*a%Mod;
a=a*a%Mod;
b>>=1;
}
return res;
}
inline void init()
{
two=qexp(2,Mod-2);
six=qexp(6,Mod-2);
memset(vis,1,sizeof(vis));
vis[0]=vis[1]=0;
phi[1]=1;
for(register int i=2;i<MAXN;++i)
{
if(vis[i])
{
prime[++cnt]=i;
phi[i]=i-1;
}
for(register int j=1;j<=cnt&&i*prime[j]<MAXN;++j)
{
vis[i*prime[j]]=0;
if(i%prime[j])phi[i*prime[j]]=phi[i]*phi[prime[j]]%Mod;
else
{
phi[i*prime[j]]=phi[i]*(ll)prime[j]%Mod;
break;
}
}
}
for(register ll i=1;i<MAXN;++i)f[i]=(f[i-1]+i*i%Mod*phi[i]%Mod)%Mod;
}
inline ll s3(ll x)
{
x%=Mod;
ll res=x*(x+1)%Mod*two%Mod;
return res*res%Mod;
}
inline ll s2(ll x)
{
x%=Mod;
return x*(x+1)%Mod*(x+x+1)%Mod*six%Mod;
}
inline ll Phis(ll x)
{
if(x<MAXN)return f[x];
if(M[x])return M[x];
ll res=s3(x);
for(register ll i=2;;)
{
if(i>x)break;
ll j=x/(x/i);
(res-=Phis(x/i)*(s2(j)-s2(i-1))%Mod)%=Mod;
i=j+1;
}
return M[x]=(res+Mod)%Mod;
}
inline ll solve(ll n)
{
ll res=0;
for(register ll i=1;;)
{
if(i>n)break;
ll j=n/(n/i);
(res+=s3(n/i)*(Phis(j)-Phis(i-1))%Mod)%=Mod;
i=j+1;
}
return (res+Mod)%Mod;
}
int main()
{
ll n;
read(Mod);read(n);
init();
write(solve(n),'\n');
return 0;
}

【刷题】洛谷 P3768 简单的数学题的更多相关文章

  1. 洛谷 P3768 简单的数学题 解题报告

    P3768 简单的数学题 题目描述 由于出题人懒得写背景了,题目还是简单一点好. 输入一个整数\(n\)和一个整数\(p,\)你需要求出\((\sum_{i=1}^n\sum_{j=1}^n ijgc ...

  2. 洛谷 - P3768 - 简单的数学题 - 欧拉函数 - 莫比乌斯反演

    https://www.luogu.org/problemnew/show/P3768 \(F(n)=\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{n}ijgcd(i ...

  3. 洛谷 P3768 简单的数学题

    https://www.luogu.org/problemnew/show/P3768 化简一下式子,就是$\sum_{d=1}^ncalc(d)d^2\varphi(d)$ 其中$calc(d)=\ ...

  4. 洛谷P3768 简单的数学题 莫比乌斯反演+杜教筛

    题意简述 求出这个式子 \[ \sum_{i=1}^n\sum_{j=1}^n ij(i,j) \bmod p \] 做法 先用莫比乌斯反演拆一下式子 \[ \begin{split} \sum_{i ...

  5. 洛谷P3768 简单的数学题

    解: 神奇的一批......参观yyb巨神的博客. 大致思路就是第一步枚举gcd,发现后面有个限制是gcd=1,用反演,得到的F(x)是两个等差数列求积. 然后发现有个地方我们除法的除数是乘积,于是换 ...

  6. 洛谷P3768 简单的数学题(莫比乌斯反演+狄利克雷卷积+杜教筛)

    传送门 不会…… 两篇加在一起都看不懂…… https://www.cnblogs.com/cellular-automaton/p/8241128.html https://www.luogu.or ...

  7. 洛谷P3768 简单的数学题 【莫比乌斯反演 + 杜教筛】

    题目描述 求 \[\sum\limits_{i=1}^{n} \sum\limits_{j=1}^{n} i*j*gcd(i,j) \pmod{p}\] \(n<=10^{10}\),\(p\) ...

  8. 洛谷 P3768 简单的数学题 (莫比乌斯反演)

    题意:求$(\sum_{i=1}^{n}\sum_{j=1}^{n}ijgcd(i,j))mod p$(p为质数,n<=1e10) 很显然,推式子. $\sum_{i=1}^{n}\sum_{j ...

  9. 洛谷P3768 简单的数学题解题报告

    $$\begin{eqnarray}&\sum_{i=1}^{n}\sum_{j=1}^{n}ij\gcd(i,j)\\&\sum_{d=1}^{n}\sum_{i=1}^{n}\su ...

随机推荐

  1. linux文件种类及其扩展名

    文件种类 普通文件(ls -al出来第一列为-) 纯文本文件(ASCII):linux系统中最多的一种文件类型,可以使用cat直接读取: 二进制文件(binary):linux下面的可执行文件: 数据 ...

  2. 如何用Python为你的邮箱加油?还有这种操作!

    我来介绍一下我是如何使用 Python 来节省成本的. 我最近在开一辆烧 93 号汽油的车子.根据汽车制造商的说法,它只需要加 91 号汽油就可以了.然而,在美国只能买到 87 号.89 号.93 号 ...

  3. JavaScript学习笔记(七)—— 再说函数

    第八章 函数 1 函数声明和函数表达式 差别一:函数声明:函数在执行代码前被创建:函数表达式是在运行阶段执行代码时创建: 差别二:函数声明创建一个与函数同名的变量,并让她指向函数:使用函数表达式,不给 ...

  4. Netty源码分析第8章(高性能工具类FastThreadLocal和Recycler)---->第7节: 获取异线程释放的对象

    Netty源码分析第八章: 高性能工具类FastThreadLocal和Recycler 第七节: 获取异线程释放的对象 上一小节分析了异线程回收对象, 原理是通过与stack关联的WeakOrder ...

  5. Linux系统下搭建FTP/SFTP服务器

    传输文件经常使用ftp和sftp服务器.Windows下有多种可视化工具,使用快捷.Linux经常需要自行搭建这两种服务器,当然搭建熟练的话,会更加快捷. 1.检查Linux系统是否安装了vsftp和 ...

  6. maven 添加spring/springmvc依赖项

    <spring.version>4.3.18.RELEASE</spring.version> <dependencies> <!--添加spring.spr ...

  7. java.lang.ClassNotFoundException: com.fasterxml.jackson.databind.ObjectMapper

    RabbitMq配置时常见错误 java.lang.ClassNotFoundException: com.fasterxml.jackson.databind.ObjectMapper <de ...

  8. [shell] 脚本之shift和getopts (转载)

    转载地址:http://www.361way.com/shell-shift-getopts/4973.html 建议不熟悉getopts的朋友,此篇要看完,getopts部分内容在原作者上面有改动. ...

  9. js给节点添加或删除类名

    为 <div> 元素添加 class: document.getElementById(“myDIV”).classList.add(“mystyle”); 为 <div> 元 ...

  10. 团队冲刺——Five

    昨天: 司宇航:web项目如何部署到公网,把网址做成桌面图标链接,登录记住密码功能. 王金萱:注册和登录界面,用户数据库的信息录入. 马佳慧:做界面. 季方:处理爬虫数据,实现统计功能. 遇到的问题: ...