写在前面

常见排序算法可以分为两大类:

  • 非线性时间比较类排序:通过比较来决定元素间的相对次序,由于其时间复杂度不能突破O(nlogn),因此称为非线性时间比较类排序。

  • 线性时间非比较类排序:不通过比较来决定元素间的相对次序,它可以突破基于比较排序的时间下界,以线性时间运行,因此称为线性时间非比较类排序。

排序复杂度

类别 名称 时间复杂度 稳定性
插入排序 插入排序(insertion sort) O(n2) 稳定
插入排序 希尔排序 (shell sort) O(nlogn) 不稳定
选择排序 选择排序(selection sort) O(n2) 不稳定
选择排序 堆排序 (heapsort) O(nlogn) 不稳定
交换排序 冒泡排序(bubble sort) O(n2) 稳定
交换排序 快速排序(quicksort) O(nlogn) 不稳定
归并排序 归并排序 (merge sort) O(nlogn) 稳定
基数排序 基数排序(radix sort) O(n+k) 稳定

冒泡排序

它重复地走访过要排序的元素列,依次比较两个相邻的元素,如果他们的顺序(如从大到小、首字母从A到Z)错误就把他们交换过来。

def bubbleSort(nums):
for i in range(len(nums) - 1):
for j in range(len(nums) - i - 1):
if nums[j] > nums[j + 1]:
nums[j], nums[j + 1] = nums[j + 1], nums[j]
return nums nums = [2, 1, 34, 4, 6, 3, 6]
result = bubbleSort(nums)
print(result) [1, 2, 3, 4, 6, 6, 34]

选择排序

每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,

然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到全部待排序的数据元素排完。

def selectSort(nums):
for i in range(len(nums) - 1):
index = i
for j in range(i + 1, len(nums)):
if nums[j] < nums[index]:
index = j
if index != i:
nums[i], nums[index] = nums[index], nums[i]
return nums nums = [2, 1, 34, 4, 6, 3, 6]
result = selectSort(nums)
print(result) [1, 2, 3, 4, 6, 6, 34]

插入排序

每步将一个待排序的记录,按其关键码值的大小插入前面已经排序的文件中适当位置上,直到全部插入完为止。

时间复杂度:O(n^2).

def insertSort1(nums):
for i in range(1, len(nums)):
index = nums[i]
j = i - 1
while j >= 0 and nums[j] > index:
nums[j+1] = nums[j]
j-=1
nums[j+1] = index
return nums nums = [2, 4, 1 ,0, 4, 3, 2, 5]
result = insertSort1(nums)
print(result) [0, 1, 2, 2, 3, 4, 4, 5]

下面方法会遍历到nums[-1],如果nums[-1] > index则进行交换,但是循环结束,nums[0]仍会赋值为index

def insertSort(nums):
for i in range(1, len(nums)):
index = nums[i]
for j in range(i, -1, -1):
if index < nums[j - 1]: #该方法会遍历到nums[-1],如果nums[-1] > index则进行交换,但是循环结束,nums[0]仍会赋值为index
nums[j]= nums[j - 1]
else:
break
nums[j] = index
return nums nums = [2, 4, 1 ,0, 4, 3, 2, 5]
result = insertSort(nums)
print(result) [0, 1, 2, 2, 3, 4, 4, 5]

快速排序

快速排序原理是首先要找到一个中枢,把小于中枢的值放到他前面,

大于中枢的值放到他的右边,然后再以此方法对这两部分数据分别

进行快速排序。先看一下代码

时间复杂度:O(nlgn)

def quickSort(nums,start,end):
#判断low是否小于high,如果为false,直接返回
if start < end:
i,j = start,end
#设置基准数
base = nums[i] while i < j:
#如果列表后边的数,比基准数大或相等,则前移一位直到有比基准数小的数出现
while (i < j) and (nums[j] >= base):
j = j - 1 #如找到,则把第j个元素赋值给第个元素i,此时表中i,j个元素相等
nums[i] = nums[j] #同样的方式比较前半区
while (i < j) and (nums[i] <= base):
i = i + 1
nums[j] = nums[i]
#做完第一轮比较之后,列表被分成了两个半区,并且i=j,需要将这个数设置回base
nums[i] = base #递归前后半区
quickSort(nums, start, i - 1)
quickSort(nums, j + 1, end)
return nums nums = [49,38,65,97,76,13,27,49]
print("Quick Sort: ")
quickSort(nums,0,len(nums)-1)
print(nums)

持续更新中..,

【数据结构与算法】003—排序算法(Python)的更多相关文章

  1. 在Object-C中学习数据结构与算法之排序算法

    笔者在学习数据结构与算法时,尝试着将排序算法以动画的形式呈现出来更加方便理解记忆,本文配合Demo 在Object-C中学习数据结构与算法之排序算法阅读更佳. 目录 选择排序 冒泡排序 插入排序 快速 ...

  2. javascript数据结构与算法--高级排序算法

    javascript数据结构与算法--高级排序算法 高级排序算法是处理大型数据集的最高效排序算法,它是处理的数据集可以达到上百万个元素,而不仅仅是几百个或者几千个.现在我们来学习下2种高级排序算法-- ...

  3. javascript数据结构与算法--高级排序算法(快速排序法,希尔排序法)

    javascript数据结构与算法--高级排序算法(快速排序法,希尔排序法) 一.快速排序算法 /* * 这个函数首先检查数组的长度是否为0.如果是,那么这个数组就不需要任何排序,函数直接返回. * ...

  4. javascript数据结构与算法--基本排序算法(冒泡、选择、排序)及效率比较

    javascript数据结构与算法--基本排序算法(冒泡.选择.排序)及效率比较 一.数组测试平台. javascript数据结构与算法--基本排序(封装基本数组的操作),封装常规数组操作的函数,比如 ...

  5. 数据结构与算法——常用排序算法及其Java实现

    冒泡排序 原理:依次比较相邻的两个数,将小数放在前面(左边),大数放在后面(右边),就像冒泡一样具体操作:第一趟,首先比较第1个和第2个数,将小数放前,大数放后.然后比较第2个数和第3个数,将小数放前 ...

  6. c/c++ 通用的(泛型)算法 之 只读算法,写算法,排序算法

    通用的(泛型)算法 之 只读算法,写算法,排序算法 只读算法: 函数名 功能描述 accumulate 求容器里元素的和 equal 比较2个容器里的元素 写算法 函数名 功能描述 fill 用给定值 ...

  7. JS中算法之排序算法

    1.基本排序算法 1.1.冒泡排序 它是最慢的排序算法之一. 1.不断比较相邻的两个元素,如果前一个比后一个大,则交换位置. 2.当比较完第一轮的时候最后一个元素应该是最大的一个. 3.按照步骤一的方 ...

  8. 数据结构与算法之排序算法(python实现)

    1.冒泡排序 冒泡排序的原理是依次比较相邻的两个数,如果前一个数比后一个数大则交换位置,这样一组比较下来会得到该组最大的那个数,并且已经放置在最后,下一轮用同样的方法可以得到次大的数,并且被放置在正确 ...

  9. 数据结构Java版之排序算法(二)

    排序按时间复杂度和空间复杂度可分为 低级排序 和 高级排序 算法两种.下面将对排序算法进行讲解,以及样例的展示. 低级排序:冒泡排序.选择排序.插入排序. 冒泡排序: 核心思想,小的数往前移.假设最小 ...

随机推荐

  1. Google zxing实现二维码扫描完美解决方案

    最近因项目需求,需要在App中集成二维码扫描的功能.网上找了很多资料,最后决定使用Google的zxing来实现.实现的过程遇到了很多的坑,也是因为这些坑在网上没有具体的解决方案,今天就把我的实现过程 ...

  2. 单机安装hive和presto

    问题: 公司最近在搞presto,主要是分析一下presto和hive的查询大数据量的性能对比: 我先把我的对比图拿出来(50条数据左右)针对同一条sql(select * from employee ...

  3. 福大软工1816:Beta(5/7)

    Beta 冲刺 (5/7) 队名:第三视角 组长博客链接 本次作业链接 团队部分 团队燃尽图 工作情况汇报 张扬(组长) 过去两天完成了哪些任务 文字/口头描述 组织会议 确定统一界面wxpy.db之 ...

  4. Windows远程桌面Debian配置

    由于xrdp.gnome和unity之间的兼容性问题,在Debian仍然无法使用xrdp登陆gnome或unity的远程桌面,现象是登录后只有黑白点为背景,无图标也无法操作.使用xrdp只能登录xfc ...

  5. selenium&phantomjs实战--漫话爬取

    为什么直接保存当前网页,而不是找到所有漫话链接,再有针对性的保存图片? 因为防盗链的原因,当直接保存漫话链接图片时,只能保存到防盗链的图片. #!/usr/bin/env python # _*_ c ...

  6. [IIS | 用户权限] Connect as... 的设置

    ApplicationPoolIdentity is actually the best practice to use in IIS7. It is a dynamically created, u ...

  7. 向服务器post或者get数据返回

    #region 向服务器端Get值返回 /// <summary> /// 向服务器端Get返回 /// </summary> ///<see cref="Au ...

  8. linux soft

    1.gdebi:可以使用gdebi来安装deb包,默认的deb安装使用的dpkg,dpkg 安装的缺点就是不解决包依赖关系 sudo apt-get install gdebi 当然也可以通过命令,使 ...

  9. [翻译] BKZoomView

    BKZoomView https://github.com/freshking/BKZoomView A UIView that will zoom into its parent view. It ...

  10. Celery学习--- Celery操作之定时任务

    celery支持定时任务,设定好任务的执行时间,celery就会定时自动帮你执行, 这个定时任务模块叫celery beat 文件定时执行任务 项目前提: 安装并启动Redis celery_Sche ...