BBN: Bilateral-Branch Network with Cumulative Learning for Long-Tailed Visual Recognition
BBN: Bilateral-Branch Network with Cumulative Learning for Long-Tailed Visual Recognition
概
数据的长短尾效应是当前比较棘手的问题, 本文提出用分支网络来应对这一问题, 并取得了不错的结果.
主要内容

这篇文章的创新点是用两个分支来适应数据的不平衡.
如图所示, 上面的分支用于标准的训练, 而下面的分支则采用适合不平衡数据的训练方式: 即一般的训练是均匀的采样分布, 而非标准训练采用的是一个非均匀的依赖于样本分布的.
通过均匀采样得到\((x_c, y_c)\), 通过非均匀采样得到\((x_r, y_r)\), 分别喂入上下分支得到特征表示\(f_c\)和\(f_r\).
注意到, 上下两个分支是共享部分参数的, 作者实际选择的是残差网络, 设定为除了最后一个residual block外均是共享的.
根据\(f_c\)和\(f_r\)进一步得到
\]
即\([z_1, z_2,\cdots, z_C]^T\).
得到相应的概率向量
\]
最后通过下列损失函数进行训练
\]
实际上, \(\alpha\)就是一个调整标准训练和处理不平衡数据的权重.
采样方式
对于非均匀分布, 作者采取了如下方式构造采样分布, 假设每个类的样本数目为\(N_i, i=1,2,\ldots,C\). 则采样比例为
\]
其中\(w_i=\frac{1}{N_i}\).
权重\(\alpha\)
作者采用的是这样的一种方案
\]
其中\(T\)为当前的epoch, \(T_{max}\)为总的训练epochs.
在实际测试中, 作者也尝试了一些别的方案, 不过别的方案不如此方案理想.
直观上的解释就是, 训练过程会有普通的训练渐渐偏向re-balance的训练.
Inference phase
在推断过程中, 设定\(\alpha=0.5\).
代码
BBN: Bilateral-Branch Network with Cumulative Learning for Long-Tailed Visual Recognition的更多相关文章
- 《Neural Network and Deep Learning》_chapter4
<Neural Network and Deep Learning>_chapter4: A visual proof that neural nets can compute any f ...
- neural network and deep learning笔记(1)
neural network and deep learning 这本书看了陆陆续续看了好几遍了,但每次都会有不一样的收获. DL领域的paper日新月异.每天都会有非常多新的idea出来,我想.深入 ...
- 树卷积神经网络Tree-CNN: A Deep Convolutional Neural Network for Lifelong Learning
树卷积神经网络Tree-CNN: A Deep Convolutional Neural Network for Lifelong Learning 2018-04-17 08:32:39 看_这是一 ...
- 论文笔记:Learning Attribute-Specific Representations for Visual Tracking
Learning Attribute-Specific Representations for Visual Tracking AAAI-2019 Paper:http://faculty.ucmer ...
- [论文阅读] A Discriminative Feature Learning Approach for Deep Face Recognition (Center Loss)
原文: A Discriminative Feature Learning Approach for Deep Face Recognition 用于人脸识别的center loss. 1)同时学习每 ...
- Neural Network Programming - Deep Learning with PyTorch with deeplizard.
PyTorch Prerequisites - Syllabus for Neural Network Programming Series PyTorch先决条件 - 神经网络编程系列教学大纲 每个 ...
- Learning to Compare: Relation Network for Few-Shot Learning 论文笔记
主要原理: 和Siamese Neural Networks一样,将分类问题转换成两个输入的相似性问题. 和Siamese Neural Networks不同的是: Relation Network中 ...
- 【转载】论文笔记系列-Tree-CNN: A Deep Convolutional Neural Network for Lifelong Learning
一. 引出主题¶ 深度学习领域一直存在一个比较严重的问题——“灾难性遗忘”,即一旦使用新的数据集去训练已有的模型,该模型将会失去对原数据集识别的能力.为解决这一问题,本文提出了树卷积神经网络,通过先将 ...
- Neural Network Programming - Deep Learning with PyTorch - YouTube
百度云链接: 链接:https://pan.baidu.com/s/1xU-CxXGCvV6o5Sksryj3fA 提取码:gawn
随机推荐
- day34 前端基础之JavaScript
day34 前端基础之JavaScript ECMAScript 6 尽管 ECMAScript 是一个重要的标准,但它并不是 JavaScript 唯一的部分,当然,也不是唯一被标准化的部分.实际上 ...
- Ubuntu Linux安装QT5之旅
1. QT 版本选择 如何选择QT版本,参考如下介绍 https://www.cnblogs.com/chinasoft/p/15226293.html 2. 在此以5.15.0解说 下载QT 版本 ...
- netty系列之:手持framecodec神器,创建多路复用http2客户端
目录 简介 配置SslContext 客户端的handler 使用Http2FrameCodec Http2MultiplexHandler和Http2MultiplexCodec 使用子channe ...
- Type difference of character literals in C and C++
Every literal (constant) in C/C++ will have a type information associated with it. In both C and C++ ...
- activiti工作流引擎
参考文章 Activiti-5.18.0与springMvc项目集成和activiti-explorer单独部署Web项目并与业务数据库关联方法(AutoEE_V2实现方式) https://blog ...
- 一文读懂RESTful架构
转载自https://zhuanlan.zhihu.com/p/381554129 RESTful架构究竟是什么 别着急,想要了解RESTful,我们先来了解一位大佬Roy Thomas Fieldi ...
- RocketMQ应用及原理剖析
主流消息队列选型对比分析 基础项对比 可用性.可靠性对比 功能性对比 对比分析 Kafka:系统间的流数据通道 RocketMQ:高性能的可靠消息传输 RabbitMQ:可靠消息传输 RocketMQ ...
- Java常用类,这一次帮你总结好!
常用类 常用类概述: 内部类 Object类 包装类 数学类 时间类 字符串 String Builder和StringBuffer DecimalFormat 一.内部类 概念:在一个类内部再定义一 ...
- kubernetes list/watch设计原理
overview kubernetes的设计里面大致上分为3部分: API驱动型的特点 (API-driven) 控制循环(control loops)与 条件触发 (Level Trigger) A ...
- 前端避坑指南丨辛辛苦苦开发的 APP 竟然被判定为简单网页打包?
传统混合移动App开发模式,通常会使用WebView作为桥接层,但随着iOS和Android应用商店审核政策日趋严格,有时会被错误判定为简单网页打包成App,上架容易遭到拒绝. 既然可能存在风险,那我 ...