1048 - Conquering Keokradong
Time Limit: 1 second(s) Memory Limit: 32 MB

This winter we are going on a trip to Bandorban. The main target is to climb up to the top of Keokradong. So, we will use a trail. The trail is a continuous marked footpath that goes from Bandorban to Keokradong.

Part of the experience is also the route planning of the trip. We have a list of all possible campsites that we can use along the way and we want to do this trip so that we only stop K nights to camp. We also know in advance the distance between consecutive campsites and we are only allowed to camp at a campsite. Our goal is to plan the trip so that we minimize the maximum amount of walking done in a single day. In other words, if our trip involves 2 nights (3 days of walking), and we walk 9, 10, 5 miles on each day respectively, the cost (maximum amount of walking done in one day) is 10. Another schedule that involves walking 9, 6, 9 miles on each day has cost 9.

Given the distances between N consecutive campsites of a trail and given the number of nights for your trip, K, your task is to devise a camping strategy for the specified trail such that it minimizes the maximum amount of walking done in a single day. Note that the first distance value given is the distance from our start-point of the trail to our 1st campsite, and the last distance value given is the distance from our Nth campsite to our end-point of the trail.

Input

Input starts with an integer T (≤ 200), denoting the number of test cases.

Each case contains of two integers, the number of campsites, N (1 ≤ N ≤ 1000) and the number of nights of the trip, K (1 ≤ K ≤ min(N, 300)). The following N + 1 lines indicate the distance in miles between consecutive campsite locations. All the integers will be positive and less than 10000.

Output

For each case of input you have to print the case number and the minimized cost as described above. Then print K+1 lines, each containing the amount of distance covered in ith day. As there can be many solutions, the primary target is to find the one which ensures that each day we have to walk some distance. For ties, print the one where the distance covered in first day is maximum, then the distance covered in second day is maximum and so on.

Sample Input

Output for Sample Input

1

4 3

7

2

6

4

5

Case 1: 8

7

8

4

5


PROBLEM SETTER: JANE ALAM JAN
题意:将N+1个数分成K+1段,并且求这些段中的最大值的最小是多少,并且保证最小的情况下按照第一段最大优先,然后第二段。。。。
思路:二分+贪心
先用二分去找最大值的最小是多少,我们可以知道当我们分的段数越小那么这个最大的值就越大,所以我们二分找到,可以分成<=k+1段的最小的最大值
然后我们知道这个值的时候,贪心组合按前到后,贪心选到每段的最大,最后只要保证取到K+1段就行
 1 #include<stdio.h>
2 #include<algorithm>
3 #include<iostream>
4 #include<string.h>
5 #include<queue>
6 #include<stack>
7 #include<set>
8 #include<math.h>
9 using namespace std;
10 int ans[2000];
11 int uu[2000];
12 bool check(int k,int n,int m)
13 {
14 int i,j;
15 int sum=0;
16 int cnt=1;
17 for(i=0; i<=n; i++)
18 {
19 if(sum+ans[i]>k)
20 {
21 uu[cnt-1]=sum;
22 sum=ans[i];
23 cnt++;
24 }
25 else if(sum+ans[i]<=k)
26 {
27 sum+=ans[i];
28 }
29 }uu[cnt-1]=sum;
30 if(m>=cnt)
31 return true;
32 else return false;
33 }
34 int main(void)
35 {
36 int i,j,k;
37 int s;
38 scanf("%d",&k);
39 for(s=1; s<=k; s++)
40 { memset(uu,0,sizeof(uu));
41 int n;
42 int m;
43 int maxx=0;
44 int sum=0;
45 scanf("%d %d",&n,&m);
46 for(i=0; i<=n; i++)
47 {
48 scanf("%d",&ans[i]);
49 maxx=max(maxx,ans[i]);
50 sum+=ans[i];
51 }
52 int l=maxx;
53 int r=sum;
54 int answer=-1;
55 while(l<=r)
56 {
57 int mid=(l+r)/2;
58 bool us=check(mid,n,m+1);
59 if(us)
60 {
61 answer=mid;
62 r=mid-1;
63 }
64 else l=mid+1;
65 }
66 printf("Case %d:",s);
67 printf(" %d\n",answer);
68 check(answer,n,m);
69 int ac=0; sum=0;
70 int cnt=1;
71 for(i=0;i<=n;i++)
72 {
73 if(sum+ans[i]>answer||(n-i-1)<m-cnt)
74 {
75 uu[cnt-1]=sum;
76 sum=ans[i];
77 cnt++;
78 }
79 else
80 {
81 sum+=ans[i];
82 }
83 }
84 uu[cnt-1]=sum;
85 for(i=0;i<m+1;i++)
86 {
87 printf("%d\n",uu[i]);
88 }
89 }
90 return 0;
91 }
 

1048 - Conquering Keokradong的更多相关文章

  1. lightoj.1048.Conquering Keokradong(二分 + 贪心)

    Conquering Keokradong Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu ...

  2. Conquering Keokradong && Get the Containers(二分)

    Conquering Keokradong Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu ...

  3. NYOJ题目1048破门锁

  4. hdu 4848 Wow! Such Conquering! (floyd dfs)

    Wow! Such Conquering! Problem Description There are n Doge Planets in the Doge Space. The conqueror ...

  5. AC日记——石子归并 codevs 1048

    1048 石子归并  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题解  查看运行结果     题目描述 Description 有n堆石子排成一列,每堆石子 ...

  6. 【BZOJ】1048: [HAOI2007]分割矩阵

    http://www.lydsy.com/JudgeOnline/problem.php?id=1048 题意:给出一个a×b(a,b<=10)的矩阵,带一个<=100的权值,现在要切割n ...

  7. PAT 解题报告 1048. Find Coins (25)

    1048. Find Coins (25) Eva loves to collect coins from all over the universe, including some other pl ...

  8. 【BZOJ】【1048】【HAOI2007】分割矩阵

    DP/记忆化搜索 暴力枚举分割方案?……大概是指数级的?大约是20!的方案= =? 但是我们看到a.b.n的范围都很小……所以不同的状态数只是$10^5$级别的,可以记忆化搜索求解 比较水的一道题…… ...

  9. PAT-乙级-1048. 数字加密(20)

    1048. 数字加密(20) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 CHEN, Yue 本题要求实现一种数字加密方法.首先固 ...

随机推荐

  1. java类加载、对象创建过程

    类加载过程: 1, JVM会先去方法区中找有没有相应类的.class存在.如果有,就直接使用:如果没有,则把相关类的.class加载到方法区 2, 在.class加载到方法区时,会分为两部分加载:先加 ...

  2. 解决springboot序列化 json数据到前端中文乱码问题

    前言 关于springboot乱码的问题,之前有文章已经介绍过了,这一篇算是作为补充,重点解决对象在序列化过程中出现的中文乱码的问题,以及后台报500的错误. 问题描述 spring Boot 中文返 ...

  3. Android Menu的基本用法

    使用xml定义Menu 菜单资源文件必须放在res/menu目录中.菜单资源文件必须使用<menu>标签作为根节点.除了<menu>标签外,还有另外两个标签用于设置菜单项和分组 ...

  4. ython学习笔记(接口自动化框架 V2.0)

    这个是根据上次框架版本进行的优化 用python获取excel文件中测试用例数据 通过requets测试接口.并使用正则表达式验证响应信息内容 生成xml文件测试报告 版本更新内容: 1. 整理了Cr ...

  5. CentOS 7.3安装完整开发环境

    系统版本CentOS 7.3(1611) 安装开发环境1) 通过group安装 yum groups mark install "Development Tools" yum gr ...

  6. oracle 预安装命令

     yum install oracle-rdbms-server-11gR2-preinstall-1.0-6.el6 

  7. spring 事务处理中,同一个类中:A方法(无事务)调B方法(有事务),事务不生效问题

    public class MyEntry implements IBaseService{ public String A(String jsonStr) throws Exception{ User ...

  8. Servlet(2):通过servletContext对象实现数据共享

    一,ServletContext介绍 web容器在启动时,它会为每一个web应用程序都创建一个ServletContext对象,它代表当前web应用 多个Servlet通过ServletContext ...

  9. <转>Java NIO API

    Java NIO API详解 NIO API 主要集中在 java.nio 和它的 subpackages 中: java.nio 定义了 Buffer 及其数据类型相关的子类.其中被 java.ni ...

  10. 拆分行(Power Query 之 M 语言)

    数据源: 略 目标: 将指定列拆分为行 操作过程: 选取指定列>[主页](或[转换])>[拆分列]>[按分隔符]/[按字符数]/[按位置]>高级选项>拆分为[行] M公式 ...