1048 - Conquering Keokradong
Time Limit: 1 second(s) Memory Limit: 32 MB

This winter we are going on a trip to Bandorban. The main target is to climb up to the top of Keokradong. So, we will use a trail. The trail is a continuous marked footpath that goes from Bandorban to Keokradong.

Part of the experience is also the route planning of the trip. We have a list of all possible campsites that we can use along the way and we want to do this trip so that we only stop K nights to camp. We also know in advance the distance between consecutive campsites and we are only allowed to camp at a campsite. Our goal is to plan the trip so that we minimize the maximum amount of walking done in a single day. In other words, if our trip involves 2 nights (3 days of walking), and we walk 9, 10, 5 miles on each day respectively, the cost (maximum amount of walking done in one day) is 10. Another schedule that involves walking 9, 6, 9 miles on each day has cost 9.

Given the distances between N consecutive campsites of a trail and given the number of nights for your trip, K, your task is to devise a camping strategy for the specified trail such that it minimizes the maximum amount of walking done in a single day. Note that the first distance value given is the distance from our start-point of the trail to our 1st campsite, and the last distance value given is the distance from our Nth campsite to our end-point of the trail.

Input

Input starts with an integer T (≤ 200), denoting the number of test cases.

Each case contains of two integers, the number of campsites, N (1 ≤ N ≤ 1000) and the number of nights of the trip, K (1 ≤ K ≤ min(N, 300)). The following N + 1 lines indicate the distance in miles between consecutive campsite locations. All the integers will be positive and less than 10000.

Output

For each case of input you have to print the case number and the minimized cost as described above. Then print K+1 lines, each containing the amount of distance covered in ith day. As there can be many solutions, the primary target is to find the one which ensures that each day we have to walk some distance. For ties, print the one where the distance covered in first day is maximum, then the distance covered in second day is maximum and so on.

Sample Input

Output for Sample Input

1

4 3

7

2

6

4

5

Case 1: 8

7

8

4

5


PROBLEM SETTER: JANE ALAM JAN
题意:将N+1个数分成K+1段,并且求这些段中的最大值的最小是多少,并且保证最小的情况下按照第一段最大优先,然后第二段。。。。
思路:二分+贪心
先用二分去找最大值的最小是多少,我们可以知道当我们分的段数越小那么这个最大的值就越大,所以我们二分找到,可以分成<=k+1段的最小的最大值
然后我们知道这个值的时候,贪心组合按前到后,贪心选到每段的最大,最后只要保证取到K+1段就行
 1 #include<stdio.h>
2 #include<algorithm>
3 #include<iostream>
4 #include<string.h>
5 #include<queue>
6 #include<stack>
7 #include<set>
8 #include<math.h>
9 using namespace std;
10 int ans[2000];
11 int uu[2000];
12 bool check(int k,int n,int m)
13 {
14 int i,j;
15 int sum=0;
16 int cnt=1;
17 for(i=0; i<=n; i++)
18 {
19 if(sum+ans[i]>k)
20 {
21 uu[cnt-1]=sum;
22 sum=ans[i];
23 cnt++;
24 }
25 else if(sum+ans[i]<=k)
26 {
27 sum+=ans[i];
28 }
29 }uu[cnt-1]=sum;
30 if(m>=cnt)
31 return true;
32 else return false;
33 }
34 int main(void)
35 {
36 int i,j,k;
37 int s;
38 scanf("%d",&k);
39 for(s=1; s<=k; s++)
40 { memset(uu,0,sizeof(uu));
41 int n;
42 int m;
43 int maxx=0;
44 int sum=0;
45 scanf("%d %d",&n,&m);
46 for(i=0; i<=n; i++)
47 {
48 scanf("%d",&ans[i]);
49 maxx=max(maxx,ans[i]);
50 sum+=ans[i];
51 }
52 int l=maxx;
53 int r=sum;
54 int answer=-1;
55 while(l<=r)
56 {
57 int mid=(l+r)/2;
58 bool us=check(mid,n,m+1);
59 if(us)
60 {
61 answer=mid;
62 r=mid-1;
63 }
64 else l=mid+1;
65 }
66 printf("Case %d:",s);
67 printf(" %d\n",answer);
68 check(answer,n,m);
69 int ac=0; sum=0;
70 int cnt=1;
71 for(i=0;i<=n;i++)
72 {
73 if(sum+ans[i]>answer||(n-i-1)<m-cnt)
74 {
75 uu[cnt-1]=sum;
76 sum=ans[i];
77 cnt++;
78 }
79 else
80 {
81 sum+=ans[i];
82 }
83 }
84 uu[cnt-1]=sum;
85 for(i=0;i<m+1;i++)
86 {
87 printf("%d\n",uu[i]);
88 }
89 }
90 return 0;
91 }
 

1048 - Conquering Keokradong的更多相关文章

  1. lightoj.1048.Conquering Keokradong(二分 + 贪心)

    Conquering Keokradong Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu ...

  2. Conquering Keokradong && Get the Containers(二分)

    Conquering Keokradong Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu ...

  3. NYOJ题目1048破门锁

  4. hdu 4848 Wow! Such Conquering! (floyd dfs)

    Wow! Such Conquering! Problem Description There are n Doge Planets in the Doge Space. The conqueror ...

  5. AC日记——石子归并 codevs 1048

    1048 石子归并  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题解  查看运行结果     题目描述 Description 有n堆石子排成一列,每堆石子 ...

  6. 【BZOJ】1048: [HAOI2007]分割矩阵

    http://www.lydsy.com/JudgeOnline/problem.php?id=1048 题意:给出一个a×b(a,b<=10)的矩阵,带一个<=100的权值,现在要切割n ...

  7. PAT 解题报告 1048. Find Coins (25)

    1048. Find Coins (25) Eva loves to collect coins from all over the universe, including some other pl ...

  8. 【BZOJ】【1048】【HAOI2007】分割矩阵

    DP/记忆化搜索 暴力枚举分割方案?……大概是指数级的?大约是20!的方案= =? 但是我们看到a.b.n的范围都很小……所以不同的状态数只是$10^5$级别的,可以记忆化搜索求解 比较水的一道题…… ...

  9. PAT-乙级-1048. 数字加密(20)

    1048. 数字加密(20) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 CHEN, Yue 本题要求实现一种数字加密方法.首先固 ...

随机推荐

  1. lxml解析库的安装和使用

    一.lxml的安装lxml是Python的一个解析库,支持HTML和XML的解析,支持XPath解析方式,而且解析效率非常高.本节中,我们了解一下lxml的安装方式,这主要从Windows.Linux ...

  2. List 去重的 6 种方法,这个方法最完美!

    在日常的业务开发中,偶尔会遇到需要将 List 集合中的重复数据去除掉的场景.这个时候可能有同学会问:为什么不直接使用 Set 或者 LinkedHashSet 呢?这样不就没有重复数据的问题了嘛? ...

  3. oracle中的控制语句

    一.条件语句1.流程控制-if else(1)ifif 判断条件 then      ...end if;(2)if-elseif 判断条件 then      ...else      ...end ...

  4. 转 Android中Activity的启动模式(LaunchMode)和使用场景

    转载请注明出处:http://blog.csdn.net/sinat_14849739/article/details/78072401本文出自Shawpoo的专栏我的简书:简书 一.为什么需要启动模 ...

  5. 3.7 rust 静态块

    Cargo.toml [dependencies] lazy_static = "1.4.0" main.rs #[macro_use] extern crate lazy_sta ...

  6. d3入门二-常用 方法

    CSV 版本6.5.0 这里的data实际上是csv中的一行数据 d3.csv("static/data/dept_cpu.csv",function (data) { conso ...

  7. HelloWorldDynamic

    package mbeanTest; import java.lang.reflect.Method; import javax.management.Attribute; import javax. ...

  8. Spring中的InitializingBean与DisposableBean

    InitializingBean顾名思义,应该是初始化Bean相关的接口. 先看一下该接口都定义了哪些方法: public interface InitializingBean { void afte ...

  9. 【编程思想】【设计模式】【基础模式Fundamental】delegation_pattern

    Python版 https://github.com/faif/python-patterns/blob/master/fundamental/delegation_pattern.py #!/usr ...

  10. OSGI 理论知识

    下面列出了主要的控制台命令: 表 1. Equinox OSGi 主要的控制台命令表 类别 命令 含义 控制框架 launch 启动框架 shutdown 停止框架 close 关闭.退出框架 exi ...