Codeforces 1361C - Johnny and Megan's Necklace(欧拉回路)
u1s1 感觉这个题作为 D1C 还是蛮合适的……
首先不难发现答案不超过 \(20\),所以可以直接暴力枚举答案并 check
答案是否合法,当然二分也是没问题的,转最优性问题为判定性问题。
考虑怎样判断一个答案 \(k\) 是否合法,由于所有相连的线 \(u,v\) 都有 \(2^k\mid a_u\oplus a_v\),那么 \(a_u\bmod 2^k=a_v\bmod 2^k\) 一定成立。因此我们可以将每个点的权值看作 \(a_i\bmod 2^k\),我们要找出一个串珠子的方法使得每条线的两端权值相等。
我们考虑将此题转化为一个图论问题,对于已经连上线的两点 \(a_i,b_i\),连一条 \(a_i\bmod 2^k\) 与 \(b_i\bmod 2^k\) 的无向边。不难想到欧拉回路。当我们经过 \(a_i\bmod 2^k\) 与 \(b_i\bmod 2^k\) 的边的时候相当于将珠子 \(2i+1,2i+2\) 与刚才串好的线连在了一起。那么如何体现”每条新连的线两端权值相等“呢?不难发现,假设我们先访问了 \(a_i\bmod 2^k\to b_i\bmod 2^k\),紧接着访问了 \(a_j\bmod 2^k\to b_i\bmod 2^k\),那么必须有 \(b_i\bmod 2^k=a_j\bmod 2^k\),这就天然地规定了它们的权值必须相等。因此只需检验建出来的图中是否存在欧拉回路即可。根据”每个点度数都是偶数,并且图须为连通图“即可检验。
找到最大的 \(k\) 后还是按照上述方式建图并跑一遍欧拉回路即可找出方案。
#include <bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define fill0(a) memset(a,0,sizeof(a))
#define fill1(a) memset(a,-1,sizeof(a))
#define fillbig(a) memset(a,63,sizeof(a))
#define pb push_back
#define ppb pop_back
#define mp make_pair
template<typename T1,typename T2> void chkmin(T1 &x,T2 y){if(x>y) x=y;}
template<typename T1,typename T2> void chkmax(T1 &x,T2 y){if(x<y) x=y;}
typedef pair<int,int> pii;
typedef long long ll;
typedef unsigned int u32;
typedef unsigned long long u64;
namespace fastio{
#define FILE_SIZE 1<<23
char rbuf[FILE_SIZE],*p1=rbuf,*p2=rbuf,wbuf[FILE_SIZE],*p3=wbuf;
inline char getc(){return p1==p2&&(p2=(p1=rbuf)+fread(rbuf,1,FILE_SIZE,stdin),p1==p2)?-1:*p1++;}
inline void putc(char x){(*p3++=x);}
template<typename T> void read(T &x){
x=0;char c=getchar();T neg=0;
while(!isdigit(c)) neg|=!(c^'-'),c=getchar();
while(isdigit(c)) x=(x<<3)+(x<<1)+(c^48),c=getchar();
if(neg) x=(~x)+1;
}
template<typename T> void recursive_print(T x){if(!x) return;recursive_print(x/10);putc(x%10^48);}
template<typename T> void print(T x){if(!x) putc('0');if(x<0) putc('-'),x=~x+1;recursive_print(x);}
void print_final(){fwrite(wbuf,1,p3-wbuf,stdout);}
}
const int MAXN=5e5;
const int MAXMSK=1<<20;
int n,a[MAXN+5],b[MAXN+5];
vector<int> nei[MAXMSK+5];
bool vis[MAXMSK+5];
void dfs(int x){
if(vis[x]) return;vis[x]=1;
for(int i=0;i<nei[x].size();i++) dfs(nei[x][i]);
}
int hd[MAXMSK+5],to[MAXN*2+5],nxt[MAXN*2+5],idu[MAXN*2+5],idv[MAXN*2+5],ec=1;
bool used[MAXN*2+5];
vector<int> ret;
void adde(int u,int v,int x,int y){
to[++ec]=v;idu[ec]=x;idv[ec]=y;nxt[ec]=hd[u];hd[u]=ec;
}
void cir(int x){
for(int &e=hd[x];e;e=nxt[e]) if(!used[e>>1]){
used[e>>1]=1;int u=idu[e],v=idv[e];
cir(to[e]);ret.pb(v);ret.pb(u);
}
}
void end(int x){
int lim=(1<<x)-1;
for(int i=1;i<=n;i++){
adde(a[i]&lim,b[i]&lim,i*2-1,i*2);
adde(b[i]&lim,a[i]&lim,i*2,i*2-1);
} cir(a[1]&lim);
printf("%d\n",x);
for(int u:ret) printf("%d ",u);
}
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++) scanf("%d%d",&a[i],&b[i]);
for(int i=20;i;i--){
int lim=(1<<i)-1;
for(int j=0;j<=lim;j++) nei[j].clear(),vis[j]=0;
for(int j=1;j<=n;j++){
nei[a[j]&lim].pb(b[j]&lim);
nei[b[j]&lim].pb(a[j]&lim);
} bool flg=1,hav=0;
for(int j=0;j<=lim;j++) if(nei[j].size()&1){flg=0;break;}
for(int j=0;j<=lim;j++) if(nei[j].size()>=1&&!vis[j]){
if(hav){flg=0;break;}hav=1;dfs(j);
}
if(flg){end(i);return 0;}
} end(0);
return 0;
}
Codeforces 1361C - Johnny and Megan's Necklace(欧拉回路)的更多相关文章
- CF1361C Johnny and Megan's Necklace
考虑\(2^x | (u \oplus v)\)的最大\(x\)小于等于\(20\) 这种题目,可以考虑搬到图上做. 我们枚举\(x\)那么对\((u\ mod\ 2^x,v\ mod\ 2^x)\) ...
- Codeforces Round #339 (Div. 1) C. Necklace 构造题
C. Necklace 题目连接: http://www.codeforces.com/contest/613/problem/C Description Ivan wants to make a n ...
- UVA 10054 the necklace 欧拉回路
有n个珠子,每颗珠子有左右两边两种颜色,颜色有1~50种,问你能不能把这些珠子按照相接的地方颜色相同串成一个环. 可以认为有50个点,用n条边它们相连,问你能不能找出包含所有边的欧拉回路 首先判断是否 ...
- 【Codeforces 526D】Om Nom and Necklace
Codeforces 526 D 题意:给一个字符串,求每个前缀是否能表示成\(A+B+A+B+\dots+A\)(\(k\)个\(A+B\))的形式. 思路1:求出所有前缀的哈希值,以便求每个子串的 ...
- UVA-10054.The Necklace(欧拉回路)解题报告
2019-02-09-21:55:23 原题链接 题目描述: 给定一串珠子的颜色对,每颗珠子的两端分别有颜色(用1 - 50 之间的数字表示,对每颗珠子的颜色无特殊要求),若两颗珠子的连接处为同种颜色 ...
- CodeForces - 547D: Mike and Fish (转化为欧拉回路)(优化dfs稠密图)(定向问题)
As everyone knows, bears love fish. But Mike is a strange bear; He hates fish! The even more strange ...
- Codeforces 526.D Om Nom and Necklace
D. Om Nom and Necklace time limit per test 1 second memory limit per test 256 megabytes input standa ...
- Codeforces 91C Ski Base 加边求欧拉回路数量
题目链接:点击打开链接 题意: 给出n个点m条无向边的图 開始图里没有边.每次加一条边,然后输出图里欧拉回路的条数. 思路: We will count the number of ski bases ...
- CodeForces 1103C. Johnny Solving
题目简述:给定简单(无自环.无重边)连通无向图$G = (V, E), 1 \leq n = |V| \leq 2.5 \times 10^5, 1 \leq m = |E| \leq 5 \time ...
随机推荐
- 【UE4 C++ 基础知识】<2> UFUNCTION宏、函数说明符、元数据说明符
UFunction声明 UFunction 是虚幻引擎4(UE4)反射系统可识别的C++函数.UObject 或蓝图函数库可将成员函数声明为UFunction,方法是将 UFUNCTION 宏放在头文 ...
- [Java]Sevlet
0 前言 对于Java程序员而言,Web服务器(如Tomcat)是后端开发绕不过去的坎.简单来看,浏览器发送HTTP请求给服务器,服务器处理后发送HTTP响应给浏览器. Web服务器负责对请求进行处理 ...
- the Agiles Scrum Meeting 3
会议时间:2020.4.11 21:30 1.每个人的工作 今天已完成的工作 yjy:基本实现广播功能的前端 issues:小组任务1-增量开发组 wjx:基本实现注销功能的后端 issues:小组任 ...
- BUAA-OO-JML
BUAA-OO-JML JML 概念与 toolchain JML 是一种为 Java 程序设计的.遵循 design by contract 范式的.基于 Hoare Logic 构建的 behav ...
- 大神教零基础入门如何快速高效的学习c语言开发
零基础如果更快更好的入门C语言,如何在枯燥的学习中找到属于自己的兴趣,如果把学习当成一种事务性的那以后的学习将会很难有更深入的进步,如果带着乐趣来完成学习那将越学越有意思这样才会让你有想要更深入学习的 ...
- Python pylint requires Python '>=3.4.*' but the running Python is 2.7.12
用pylint 1.9.x 安装 pip install pylint==1.9.3. 或者换源 pip install -i https://pypi.tuna.tsinghua.edu.cn/si ...
- 二层组网AP上线
一.实验目的 1)掌握配置WLAN源接口的命令 2)掌握配置DHCP服务器的命令 3)掌握手工确认AP上线的方法a 二.实验仪器设备及软件 仪器设备:一台AC,四台AP 软件:ENSP 三.实验原理 ...
- 如何利用SimpleNVR建立全天候远程视频监控系统
随着社会经济的发展,5G.AI.云计算.大数据.物联网等新兴技术迭代更新的驱动下,传统的安防监控早已无法满足我们的需求.那么我们如何建立全天候远程视频监控系统来替代传统监控呢?如何进一步优化城市管理. ...
- Java经典面试题-不古出品
@ 目录 一.Java 基础 1.JDK 和 JRE 有什么区别? 2.== 和 equals 的区别是什么? 3.两个对象的 hashCode()相同,则 equals()也一定为 true,对吗? ...
- 常见yaml写法-deployment
apiVersion: extensions/v1beta1 #接口版本 kind: Deployment #接口类型 metadata: name: cango-demo #Deployment名称 ...