miRNA预测工具miRDeep-P2
之前讲过预测植物miRNA的一款软件miR-PREFER, 今天在介绍一款软件miRDeep-p2, 也叫miRDP2
安装
在此之前,应安装一下软件
Bowite, Bowtie2, Vienna (RNA二级结构预测软件大礼包)
安装以上软件以后,在mirdp2下载最新版的miRDP2,以及ncRNA_rfam.tar.g
1 tar -xf miRDP2-v1.1.4.tar
2mv 1.1.4 miRDP2-v1.1.4
在TestData下载测试数据集--TestData.tar.gz
miRNA数据处理
(1)去接头,长度选择在18-30 bp,选用cutadapt
(2) 去低质量reads, 可以用fastp
(3)将fastq 文件转成fasta文件,并去除冗余序列,每个reads的编号:read0_x29909,x后面表示相同的序列数,最后要保证FASTA中的每个序列都唯一。
可以选用以下脚本(将.fq 放在一个文件夹):
1 #!/usr/bin/env python
2
3 import os,re
4 from collections import defaultdict
5
6 li = os.listdir(os.getcwd())
7 oli = filter(lambda x: x.endswith(".fa"),li)
8 oli.sort()
9
10
11 for fil in oli:
12 info = defaultdict(int)
13 with open(fil) as f,\
14 open("%s.fa" %fil,"w") as o:
15 while 1:
16 name = f.readline()
17 seq = f.readline()
18 plus = f.readline()
19 qual = f.readline()
20 if name == '':
21 break
22 info[seq.strip()] +=1
23 count = -1
24 for k,v in info.items():
25 count +=1
26 o.write(">read%s_x%s\n%s\n" %(count,v,k))
运行
再次之前,修改一下miRDP2-v1.1.4_pipeline.bash中的一个参数,因为我的RNAfold跑不通,所以修改
RNAfold --noPS 中的 --noPS参数。为-noPS
新建文件夹,用于存放测试数据
1 mkdir miRDP2_Test
将下载的测试数据以及Rfam文件上传到改文件夹,并压缩
1 tar xf ncRNA_rfam.tar.gz 2 tar xf TestData.tar.gz
建立索引
1 bowtie-build -f ./TestData/TAIR10_genome.fa ./TestData/TAIR10_genome.fa
3 ##为Rfam建立索引,一定得在流程中script/index 下目录下
5 bowtie-build -f ./ncRNA_rfam.fa miRDP2-v1.1.4/scripts/ram_index
其中ncRNA_rfam.fa 为Rfam中非编码RNA (包括rRNA, tRNA,snRNA, and snoRNA), 也可以从Rfam上自行下载所有RNA.fa序列,并根据RNA类型进行分类合并。
运行流程
1 miRDP2-v1.1.4_pipeline.bash -g ./TestData/TAIR10_genome.fa -x ./TestData/TAIR10_genome -f -i ./TestData/GSM2094927.fa -o ./
2
3 #-g 基因组序列
4 #-x 索引
5 #-f sRNA-seq 为fasta格式
6 #-i 输入RNA文件,多个文件用逗号隔开
7 #可选
8 #-L:reads匹配到最少的位置,默认15, 以防有重复序列
9 #-M:bowtie 的错配,默认为0
结果:
- miRNA预测结果:
GSM2094927-15-0-10_filter_P_prediction
, 每列的内容分别为,“染色体编号”,“所在链”,“代表性的短读编号”,“前体编号”,“成熟miRNA位置”,“前体位置”,“成熟序列”,“前体序列 ” - 日志文件:
script_log
和script_err
, 在运行出错时用于排除
软件大概步骤
(1)将reads 比对到ncRNA seq,和known miR mature seq得到 rfam_reads.aln, known_miR.aln
利用脚本 preprocess_reads.pl 对上述 rfam_reads.aln, known_miR.aln 过滤reads,得到 *.fa 以及 *-precessed.fa,*.total_reads
(2)mapping filtered reads
将 *-precessed.fa 比对参考基因组, 得到 *_processed.aln
用 convert_bowtie_to_blast.pl 将 *_processed.aln --》 *-processed.bst (
用 filter_alignments.pl 过滤掉比对到一定次数以上(默认15)的reads, *-processed.bst ---》 *-processed_filter${len}.bst
(3)根据比对位置,提取上下游一定长度序列作为前提序列,并预测二级结构
利用 excise_candidate.pl ,将 *-processed_filter${len}.bst --》 *_precursors.fa
利用 RNAfold 软件 预测2级结构, *_precursors.fa --》 _structures
(4)提取不是ncRNA的reads 作为signature preparation
将 *.fa 比对到参考基因组, 得到 *.aln
利用convert_bowtie_to_blast.pl 将 *.aln --》*.bst
用 filter_alignments.pl 过滤掉比对到一定次数以上(默认15)的reads, 将 *.bst ---》 *_filter${len}.bst
用 filter_alignments.pl 将 *_filter${len}.bst --》 *_filtered.fa
准备 reads signature file
对 *_precursors.fa 进行bowtie-build 建库
将 *_filtered.fa 比对到 *_precursors.fa, 得到 *_precursors.aln
利用convert_bowtie_to_blast.pl 将 **_precursors.aln --》*_precursors.bst
将 *_precursors.bst --〉*_signatures
(5)miRDP core algorithm
利用 mod-miRDP.pl 将 *_signatures, *_structures --》_predictions
------END------
关注下方公众号可获得更多精彩
miRNA预测工具miRDeep-P2的更多相关文章
- facebook开源的prophet时间序列预测工具---识别多种周期性、趋势性(线性,logistic)、节假日效应,以及部分异常值
简单使用 代码如下 这是官网的quickstart的内容,csv文件也可以下到,这个入门以后后面调试加入其它参数就很简单了. import pandas as pd import numpy as n ...
- Facebook支持python的开源预测工具Prophet
Facebook 宣布开源一款基于 Python 和 R 语言的数据预测工具――“Prophet”,即“先知”.取名倒是非常直白. Facebook 表示,Prophet 相比现有预测工具更加人性化, ...
- 七种常见的核酸序列蛋白编码能力预测工具 | ncRNAs | lncRNA
注:这些工具的应用都是受限的,有些本来就是只能用于预测动物,在使用之前务必用ground truth数据来测试一些.我想预测某一个植物的转录本,所以可以拿已经注释得比较好的拟南芥来测试一下.(测试的结 ...
- Ensembl突变数据描述之(一)——突变物种数据库及预测工具
以下是对Ensembl突变数据库中储存的数据的描述,对于Ensembl数据库中不同的物种,我们从各种来源(例如,dbSNP数据库)导入突变数据(SNP.CNV.等位基因频率.基因型等),导入的突变数据 ...
- 5、预测和鉴定miRNA的靶基因
转载:http://www.oebiotech.com/Article/mirnabjyyc.html http://www.ebiotrade.com/newsf/2014-9/2014925941 ...
- R+先知︱Facebook大规模时序预测『真』神器——Prophet(遍地代码图)
经统专业看到预测的packages都是很眼馋的.除了之前的forecast包,现在这个prophet功能也很强大.本packages是由机器之心报道之后,抽空在周末试玩几小时.一些基本介绍可见机器之心 ...
- DNA sequence open reading frames (ORFs) | DNA序列的开放阅读框ORF预测
常见的ORF预测工具 Open Reading Frame Finder- NCBI ORF Finder - SMS OrfPredictor - YSU 基本概念 开放阅读框(英语:Open r ...
- 植物 miRNA 研究
相比动物miRNA 而言, 植物miRNA 的研究相对较少. 植物miRNA 相比动物miRNA , 有以下特点: 1) 植物miRNA 的长度为 21 nt 左右, 动物miRNA 长度在 22 ~ ...
- 蛋白质组DIA深度学习之谱图预测
目录 1. 简介 2. 近几年发表的主要工具 1.DeepRT 2.Prosit 3. DIANN 4.DeepDIA 1. 简介 基于串联质谱的蛋白质组学大部分是依赖于数据库(database se ...
随机推荐
- Redis:学习笔记-04
Redis:学习笔记-04 该部分内容,参考了 bilibili 上讲解 Redis 中,观看数最多的课程 Redis最新超详细版教程通俗易懂,来自 UP主 遇见狂神说 10. Redis主从复制 1 ...
- [软工顶级理解组] 团队规划和任务拆解(Beta)
目录 需求再分析 功能增减 管理改进 任务分解 人员管理 需求再分析 在Alpha阶段,我们的产品得到了用户的广泛好评,但是还是存在一些问题. 登录不稳定,登录速度慢等问题:这是北航VPN本身的不稳定 ...
- RogrePirates Scrum Meeting 博客汇总
RogrePirates 博客目录 一.Scrum Meeting 1.Alpha阶段 第一次会议 第二次会议 第三次会议 第四次会议 第五次会议 第六次会议 第七次会议 第八次会议 第九次会议 第十 ...
- BUAAOO第四单元总结
---恢复内容开始--- 一.本单元两次作业的架构设计 第十三次作业:本次作业我创建了四个类,除去官方提供的Main和MyUmlInteraction类之外,还有Uclass和Ulinterface分 ...
- java监控JVM的内存使用情况等
以下的程序监控参数的代码,有些是从网络上获取的,此处进行一个记录是为了以后如果要用到方便记录. 1.引入jar包,为了获取一些cpu的使用率等信息 <dependency> <gro ...
- 人人都写过的5个Bug!
大家好,我是良许. 计算机专业的小伙伴,在学校期间一定学过 C 语言.它是众多高级语言的鼻祖,深入学习这门语言会对计算机原理.操作系统.内存管理等等底层相关的知识会有更深入的了解,所以我在直播的时候, ...
- C++构造函数注意事项
1.匿名对象 首先应该明确匿名对象,匿名对象是之没有对象名,调用完构造函数后即析构的对象.下面通过代码捕捉类的构造函数和析构函数,以进行说明: #include <iostream> us ...
- Python 调用上级目录的文件
程序结构如下: – src |-- mod1.py |-- lib | |-- mod2.py |-- sub | |-- test.py 具体代码如下: 在test.py里调用mod1 mod2 i ...
- Codeforces Round #736 (Div. 2)
A,B,C就不说了,又被D题卡住了..... 感觉怎么说呢,就是题解中的三个提示都已经想到了,就是不知道该怎么解决.... D. Integers Have Friends 简述题意:题目要求你找一个 ...
- DP秒思维
DP算法对于大部分题有着良好的能力,但有些题目我们要转换思维,不能直接的设具体的转态.... 最近做了两道秒题,在这里分享一下: https://ac.nowcoder.com/acm/contest ...