[cf578F]Mirror Box
构造如下一张无向图:
1.点集大小为$(n+1)(m+1)$,即所有格点
2.边集大小为$nm$,即所有镜子所连结的两个格点
对于一个确定的镜子状态,即可确定上图,那么来考虑什么样的图是合法的
结论:如果将这些点黑白染色,显然不存在连结黑色和白色点的边,之后合法当且仅当黑色点恰好构成生成树或白色点恰好构成生成树
由于两者不可能同时构成生成树(这意味着有$(n+1)(m+1)-2$条边,边数不足)
以黑色为例,对于一个未确定的镜子,也就是一条边是否存在,不难发现这就是一个生成树计数,对于强制存在的边预先缩点即可,由于最后至多新增$k$条边,即若缩点后连通块数多于$k+1$无解($k$为$*$个数)
根据矩阵树定理计算,复杂度显然是$o(k^{3})$,缩点复杂度为$o(nm\log nm)$,即可通过
下面考虑前面的结论,简单的说明一下:
为了方便,将最外面的一圈边界也看作镜子并连边,然后即构成了一张平面图
对于平面图中的封闭图形,显然光线无法穿过多个封闭图形,接下来我们证明一个封闭图形中恰好有一条光线,且覆盖了其中所有位置
证明比较简单,只需要找到一个与光线相邻且未被覆盖的位置,从该处引出一条光线就会导致矛盾
换言之,与边界线在同一个封闭图形内的另一个出口就是其结束的位置
这也就等价于边界上所有黑点(或白点)相邻两点连通,那么即构成一个仅含相邻两段边界线的封闭图形,同时如果不包含所有黑点,那么外面这一圈相邻两点的路径有交,必然构成一个不包含边界的封闭图形,无法被覆盖

1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 105
4 vector<pair<int,int> >v;
5 int n,m,k,mod,a[N<<1][N<<1],pos[N*N],f[N*N];
6 char s[N][N];
7 int id(int x,int y){
8 return x*(m+1)+y+1;
9 }
10 int find(int k){
11 if (k==f[k])return k;
12 return f[k]=find(f[k]);
13 }
14 bool merge(int x,int y){
15 x=find(x),y=find(y);
16 if (x==y)return 0;
17 f[x]=y;
18 return 1;
19 }
20 int pow(int n,int m){
21 int s=n,ans=1;
22 while (m){
23 if (m&1)ans=1LL*ans*s%mod;
24 s=1LL*s*s%mod;
25 m>>=1;
26 }
27 return ans;
28 }
29 int guess(int n){
30 int ans=1;
31 for(int i=1;i<=n;i++){
32 int k=-1;
33 for(int j=i;j<=n;j++)
34 if (a[j][i]){
35 k=j;
36 break;
37 }
38 if (k<0)return 0;
39 if (k!=i){
40 ans=mod-ans;
41 for(int j=i;j<=n;j++)swap(a[i][j],a[k][j]);
42 }
43 ans=1LL*ans*a[i][i]%mod;
44 int s=pow(a[i][i],mod-2);
45 for(int j=i;j<=n;j++)a[i][j]=1LL*a[i][j]*s%mod;
46 for(int j=i+1;j<=n;j++){
47 int s=a[j][i];
48 for(int k=i;k<=n;k++)a[j][k]=(a[j][k]-1LL*s*a[i][k]%mod+mod)%mod;
49 }
50 }
51 return ans;
52 }
53 int calc(int p){
54 for(int i=0;i<=n;i++)
55 for(int j=0;j<=m;j++)
56 if ((i+j)%2==p)f[id(i,j)]=id(i,j);
57 v.clear();
58 for(int i=0;i<n;i++)
59 for(int j=0;j<m;j++)
60 if ((i+j)%2==p){
61 if (s[i][j]=='*')v.push_back(make_pair(id(i,j),id(i+1,j+1)));
62 if (s[i][j]=='\\'){
63 if (!merge(id(i,j),id(i+1,j+1)))return 0;
64 }
65 }
66 else{
67 if (s[i][j]=='*')v.push_back(make_pair(id(i,j+1),id(i+1,j)));
68 if (s[i][j]=='/'){
69 if (!merge(id(i,j+1),id(i+1,j)))return 0;
70 }
71 }
72 pos[0]=0;
73 for(int i=0;i<=n;i++)
74 for(int j=0;j<=m;j++)
75 if (((i+j)%2==p)&&(f[id(i,j)]==id(i,j)))pos[id(i,j)]=++pos[0];
76 if (pos[0]>k+1)return 0;
77 memset(a,0,sizeof(a));
78 for(int i=0;i<v.size();i++){
79 int x=pos[find(v[i].first)],y=pos[find(v[i].second)];
80 if (x<pos[0])a[x][x]=(a[x][x]+1)%mod;
81 if (y<pos[0])a[y][y]=(a[y][y]+1)%mod;
82 if ((x<pos[0])&&(y<pos[0])){
83 a[x][y]=(a[x][y]+mod-1)%mod;
84 a[y][x]=(a[y][x]+mod-1)%mod;
85 }
86 }
87 return guess(pos[0]-1);
88 }
89 int main(){
90 scanf("%d%d%d",&n,&m,&mod);
91 for(int i=0;i<n;i++){
92 scanf("%s",s[i]);
93 for(int j=0;j<m;j++)
94 if (s[i][j]=='*')k++;
95 }
96 printf("%d",(calc(0)+calc(1))%mod);
97 }
[cf578F]Mirror Box的更多相关文章
- [codeforces 241]C. Mirror Box
[codeforces 241]C. Mirror Box 试题描述 Mirror Box is a name of a popular game in the Iranian National Am ...
- 「CF578F」 Mirror Box
description CF578F solution 考虑转化题目的要求 1.对于任意一条边,都存在一条从界垂直射入的光线,经过反射穿过这条边. 当图中有环时,环内的边一定不满足条件,而在不存在环时 ...
- 矩阵树定理&BEST定理学习笔记
终于学到这个了,本来准备省选前学来着的? 前置知识:矩阵行列式 矩阵树定理 矩阵树定理说的大概就是这样一件事:对于一张无向图 \(G\),我们记 \(D\) 为其度数矩阵,满足 \(D_{i,i}=\ ...
- 为 Virtual Box 中的 CentOS 6.6 配置本地DVD光盘做yum软件源
因为virtual box 中的centos配置host-only共享win7上网,配置失败,所以只能使用Centos的 DVD 光盘来配置yum软件源.不然就没得完了. 1. 首先要在virtual ...
- Box/坐标/方向/Row
1.Box, 我们在做design planning的第一步就是确定floorplan的box,也就是设计的区域.这个区域可以划分为三个边界,如下图所示: 上图中,按对应的颜色框框可以分为:Die B ...
- Virtual Box配置CentOS7网络(图文教程)
之前很多次安装CentOS7虚拟机,每次配置网络在网上找教程,今天总结一下,全图文配置,方便以后查看. Virtual Box可选的网络接入方式包括: NAT 网络地址转换模式(NAT,Network ...
- Linux监控工具介绍系列——OSWatcher Black Box
OSWatcher Balck Box简介 OSWatcher Black Box (oswbb)是Oracle开发.提供的一个小巧,但是实用.强大的系统工具,它可以用来抓取操作系统的性能指标,用 ...
- 使用packer制作vagrant centos box
使用packer制作vagrant box:centos 制作vagrant box,网上有教程,可以自己step by step的操作.不过直接使用虚拟在VirtualBox中制作vagrant b ...
- 快速打造跨平台开发环境 vagrant + virtualbox + box
工欲善其事必先利其器,开发环境 和 开发工具 就是 我们开发人员的剑,所以我们需要一个快并且好用的剑 刚开始做开发的时候的都是把开发环境 配置在 自己的电脑上,随着后面我们接触的东西越来越多,慢慢的电 ...
随机推荐
- 高中最后一刻&大学第一课&为人师的责任
文章不是技术文,只是分享一些感想,作为一只程序猿,不说好好敲代码,跑出来思考人生,不是合格的程序猿,罪过罪过,自我反思3秒钟,我们继续,毕竟程序猿的人生不只是Coding,也希望自己这点感想被更多刚入 ...
- 一文读懂 Serverless,将配置化思想复用到平台系统中
作者 | 春哥大魔王 来源 | Serverless 公众号 写在前面 在 SaaS 领域 Salesforce 是佼佼者,其 CRM 的概念已经扩展到了 Marketing.Sales.Servic ...
- C++类结构体与json相互转换
1. 背景与需求 之前写C#的时候,解析json字符串一般使用的是开源的类库Newtonsoft.Json,方法十分简洁,比如: class Project { public string Input ...
- Python | JSON 数据解析(Json & JsonPath)
一.什么是JSON? JSON(JavaScript Object Notation, JS 对象简谱) 是一种轻量级的数据交换格式.它基于 ECMAScript (欧洲计算机协会制定的js规范)的一 ...
- javascript-jquery-文档处理
一.移动元素 1.append():向每个匹配元素的内部追加内容.例如:$("选择器1").qppend("选择器2"):将会匹配选择器2的元素,移动到匹配选择 ...
- stm32直流电机驱动与测速
stm32直流电机驱动与测速 说实话就现在的市场应用中stm32已经占到了绝对住到的地位,51已经成为过去式,32的功能更加强大,虽然相应的难度有所增加,但是依然阻止不了大家学习32的脚步,不说大话了 ...
- IDEA插件开发,我是如何把公司的发布系统搬到IDEA里的
不得不说JetBrains公司直的非常的牛B,每一个程序员都能在JetBrains的官方网站找到一款属于自己的开发工具.这些开发工具在工作中给我们带来了巨大的便利.各种各样的基础插件,第三方插件,真是 ...
- Spring MVC:HandlerMapping
HandlerMapping 的类图 Spring中存在两种类型的handlers.第一种是 handler mappings(处理程序映射).它们的角色定位与前面所描述的功能完全相同.它们尝试将当前 ...
- Spring源码解读(一):Spring的背景起源及框架整体介绍
一.前言 Spring起源于2002年Rod Johnson写的一本书<Expert One-on-One J2EE>,书里介绍了Java企业应用程序开发情况,并指出Java EE和EJB ...
- Spring Boot 2.5.0 重新设计的spring.sql.init 配置有何用?
前几天Spring Boot 2.5.0发布了,其中提到了关于Datasource初始化机制的调整,有读者私信想了解这方面做了什么调整.那么今天就要详细说说这个重新设计的配置内容,并结合实际情况说说我 ...