注意到最终图的样子可以看作一条从1到$n$的路径,以及删去这条路径上的边后,路径上的每一个点所对应的一个连通块

考虑dp,令$f_{S,i}$表示当前1到$n$路径上的最后一个点以及之前点(包括$i$)所对应连通块的并,转移考虑枚举下一个点以及其对应的连通块,即$f_{S\cup T,j}=\min(f_{S,i}+sum(S,T)-len(i,j))$

(其中$len(i,j)$表示$(i,j)$这条边的长度,$sum(S,T)=\sum_{x\in S,y\in T,(x,y)\in E}len(x,y)$)

初始状态为$f_{S,1}=0$(其中$1\in S$且$S$的导出子图连通),$f_{other}=\infty$

转移条件为$(i,j)\in E$、$j\in T$、$S\cap T=\empty$且$T$的导出子图连通,因此转移复杂度为$o(n^{2}3^{n})$(关于$T$导出子图连通的这个条件预处理即可)

进一步优化,关于$j$和$T$的枚举可以分开,即先求出$g_{j}=\min(f_{S,i}-len(i,j))$,再枚举包含$j$的$T$即可(这样做的实际意义是先将$S$中所有到$j$的边选择最小的),时间复杂度降为$o(n3^{n})$

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 15
4 struct ji{
5 int nex,to,len;
6 }edge[N*N];
7 int E,n,m,x,y,z,head[N],vis[N],g[N],con[1<<N],sum[1<<N],f[1<<N][N];
8 void add(int x,int y,int z){
9 edge[E].nex=head[x];
10 edge[E].to=y;
11 edge[E].len=z;
12 head[x]=E++;
13 }
14 void dfs(int k,int s){
15 if (((s&(1<<k))==0)||(vis[k]))return;
16 vis[k]=1;
17 for(int i=head[k];i!=-1;i=edge[i].nex)dfs(edge[i].to,s);
18 }
19 int main(){
20 scanf("%d%d",&n,&m);
21 memset(head,-1,sizeof(head));
22 for(int i=1;i<=m;i++){
23 scanf("%d%d%d",&x,&y,&z);
24 add(x-1,y-1,z);
25 add(y-1,x-1,z);
26 }
27 memset(f,0x3f,sizeof(f));
28 for(int i=0;i<(1<<n);i++){
29 memset(vis,0,sizeof(vis));
30 for(int j=0;j<n;j++)
31 if (i&(1<<j)){
32 dfs(j,i);
33 break;
34 }
35 bool flag=0;
36 for(int j=0;j<n;j++)
37 if ((i&(1<<j))&&(!vis[j])){
38 flag=1;
39 break;
40 }
41 if (!flag){
42 con[i]=1;
43 if (i&1)f[i][0]=0;
44 }
45 }
46 for(int i=1;i<(1<<n);i+=2){
47 if (!con[i])continue;
48 for(int x=0;x<n;x++){
49 g[x]=0x3f3f3f3f;
50 sum[(1<<x)]=0;
51 }
52 for(int x=0;x<n;x++)
53 if ((i&(1<<x))){
54 for(int j=head[x];j!=-1;j=edge[j].nex){
55 y=edge[j].to;
56 if ((i&(1<<y))==0){
57 g[y]=min(g[y],f[i][x]-edge[j].len);
58 sum[(1<<y)]+=edge[j].len;
59 }
60 }
61 }
62 int ii=(1<<n)-1-i;
63 for(int j=(ii&(ii-1));j>=0;j=((j-1)&ii)){
64 int jj=(ii^j),k=(jj&(jj-1));
65 sum[jj]=sum[jj^k]+sum[k];
66 if (jj==ii)break;
67 }
68 for(int x=0;x<n;x++)
69 for(int j=ii;j;j=((j-1)&ii))
70 if ((j&(1<<x))&&(con[j]))f[i|j][x]=min(f[i|j][x],g[x]+sum[j]);
71 }
72 printf("%d",f[(1<<n)-1][n-1]);
73 }

[atARC078F]Mole and Abandoned Mine的更多相关文章

  1. Mole and Abandoned Mine

    Mole and Abandoned Mine n点m条边的无向图,删除第i条边花费c[i],问1到n只有一条路径时所需要的最小花费? \(2\le n\le 15\) . 我又A掉了一道zzs的题啦 ...

  2. AT2657 Mole and Abandoned Mine

    传送门 好神的状压dp啊 首先考虑一个性质,删掉之后的图一定是个联通图 并且每个点最多只与保留下来的那条路径上的一个点有边相连 然后设状态:\(f[s][t]\)代表当前联通块的点的状态为\(s\)和 ...

  3. 题解-AtCoder ARC-078F Mole and Abandoned Mine

    problem ATC-arc078F 题意概要:给定一个 \(n\) 点 \(m\) 边简单无向图(无自环无重边),边有费用,现切去若干条边,使得从 \(1\) 到 \(n\) 有且仅有一条简单路径 ...

  4. AtCoder arc078_d Mole and Abandoned Mine

    洛谷题目页面传送门 & AtCoder题目页面传送门 给定一个无向连通带权图\(G=(V,E),|V|=n,|E|=m\)(节点从\(0\)开始编号),要删掉一些边使得节点\(0\)到\(n- ...

  5. AT2657 [ARC078D] Mole and Abandoned Mine

    简要题解如下: 记 \(1\) 到 \(n\) 的路径为关键路径. 注意到关键路径只有一条是解题的关键,可以思考这张图长什么样子. 不难发现关键路径上所有边均为桥,因此大致上是关键路径上每个点下面挂了 ...

  6. 【做题】arc078_f-Mole and Abandoned Mine——状压dp

    题意:给出一个\(n\)个结点的联通无向图,每条边都有边权.令删去一条边的费用为这条边的边权.求最小的费用以删去某些边使得结点\(1\)至结点\(n\)有且只有一条路径. \(n \leq 15\) ...

  7. AtCoder Regular Contest 078

    我好菜啊,ARC注定出不了F系列.要是出了说不定就橙了. C - Splitting Pile 题意:把序列分成左右两部分,使得两边和之差最小. #include<cstdio> #inc ...

  8. 【AtCoder】ARC078

    C - Splitting Pile 枚举从哪里开始分的即可 #include <bits/stdc++.h> #define fi first #define se second #de ...

  9. AtCoder刷题记录

    构造题都是神仙题 /kk ARC066C Addition and Subtraction Hard 首先要发现两个性质: 加号右边不会有括号:显然,有括号也可以被删去,答案不变. \(op_i\)和 ...

随机推荐

  1. hd-cg辉度通用代码生成器

    HD-CG 辉度通用代码生成器 主要特点: 1. 自定义代码模板:通过简单的默认变量自行编写代码模板,如果默认变量不满足需求,也可增加自定义变量. 2. 自定义数据源:可自定义添加多个项目的数据库,数 ...

  2. CAD_DWG图Web可视化一站式解决方案-唯杰地图-vjmap

    背景 DWG图是AutoCAD是私有格式,只能在CAD软件上编辑查看,如何发布至Web上做数据展示,GIS分析应用开发,一直是业内头疼的事情. 传统的办法采用的解析AutoCAD图形绘制,并封装成Ac ...

  3. 使用Python写词云数据可视化

    词云的应用场景 会议记录 海报制作 PPT制作 生日表白 数据挖掘 情感分析 用户画像 微信聊天记录分析 微博情感分析 Bilibili弹幕情感分析 年终总结 安装本课程所需的Python第三方模块 ...

  4. 用最简单的方式理解 IoC 控制反转

    思想引入 假设一个系统原先只设定有一个默认的方法去完成业务,这里举例这个原先设定开发的是 UserDaoImpl(可能有些牵强,但是不影响我们对逻辑的理解)这样一个业务. 后来有一天,需求变了,业务流 ...

  5. java链接并操作数据库

    链接准备 MySQL数据库驱动(连接器).mysql-connector-java-x.x.xx.jar会在MySQL安装时提供,若Mysql是默认安装路径,则连接器在:C:\Program File ...

  6. Python实现九九乘法表

  7. Mybatis 二级缓存应用 (21)

    [MyBatis 二级缓存] 概述:一级缓存作用域为同一个SqlSession对象,而二级缓存用来解决一级缓存不能夸会话共享,作用范围是namespace级,可以被多个SqlSession共享(只要是 ...

  8. TCP三次握手四次挥手,通俗易懂版

    三次握手四次挥手 三次握手 其实很好理解,三次握手就是保证双手都有发送和接受的能力.那么最少三次才能验证完成 即----> 客户端发送---服务端收到----服务端发送-- 1.客户端发送 -- ...

  9. Coursera Deep Learning笔记 结构化机器学习项目 (下)

    参考:https://blog.csdn.net/red_stone1/article/details/78600255https://blog.csdn.net/red_stone1/article ...

  10. Noip模拟10 2021.6.27

    T1 入阵曲 好了,又一个考试败笔题. 也就是在那个时候,小 F 学会了矩阵乘法.让两个矩阵乘几次就能算出斐波那契数, 真是奇妙无比呢. 不过, 小 F 现在可不想手算矩阵乘法--他觉得好麻烦.取而代 ...