NOIP 模拟 $32\; \rm Six$
题解
二维状压。
第一维直接压选不同质因子的方案,第二位压方案。
分两种讨论,显然一种方案最多出现两次,否则就不合法了,所以一种是出现了一次的,另一种是出现了两次的,这样可以减小状态数。
实现可以用 \(vector\) 或记忆化搜索。
虽然状态看起来很大,但实际可以证明不超过 \(50000\) 个。
Code
#include<bits/stdc++.h>
#define ri register signed
#define p(i) ++i
namespace IO{
char buf[1<<21],*p1=buf,*p2=buf;
#define gc() p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?(-1):*p1++
struct nanfeng_stream{
template<typename T>inline nanfeng_stream &operator>>(T &x) {
ri f=0;x=0;register char ch=gc();
while(!isdigit(ch)) {f|=ch=='-';ch=gc();}
while(isdigit(ch)) {x=(x<<1)+(x<<3)+(ch^48);ch=gc();}
return x=f?-x:x,*this;
}
}cin;
}
using IO::cin;
namespace nanfeng{
#define fi first
#define se second
#define mk std::make_pair
#define lowbit(x) ((x)&-(x))
#define pair std::pair
#define FI FILE *IN
#define FO FILE *OUT
template<typename T>inline T cmax(T x,T y) {return x>y?x:y;}
template<typename T>inline T cmin(T x,T y) {return x>y?y:x;}
typedef long long ll;
static const int MOD=1e9+7,N=1<<7;
int tot,S;
ll n,d[N],fla[N];
std::map<pair<ll,ll>,int> dp;
pair<ll,int> prm[N];
inline int MD(int x) {return x>=MOD?x-MOD:x;}
ll dfs(const ll S1,const ll S2) {
register pair<ll,ll> tmp=mk(S1,S2);
if (dp[tmp]) return dp[tmp];
dp[tmp]=1;
for (ri i(1);i<S;p(i)) {
ri sum(0);
register bool fl(0),fg(0);
for (ri j(1);j<S;p(j)) {
if (!(i&j)) continue;
if ((S1>>j)&1) p(sum);
if ((S2>>j)&1) fl=1;
if (fl||sum>1) {fg=1;break;}
}
if (fg) continue;
if ((S1>>i)&1) dp[tmp]=MD(dp[tmp]+d[i]*dfs(S1^(1ll<<i),S2|(1ll<<i))%MOD);
else dp[tmp]=MD(dp[tmp]+d[i]*dfs(S1|(1ll<<i),S2)%MOD);
}
return dp[tmp];
}
inline int main() {
//FI=freopen("nanfeng.in","r",stdin);
//FO=freopen("nanfeng.out","w",stdout);
cin >> n;
for (register ll i(2);i*i<=n;p(i)) {
ri cnt(0);
while(!(n%i)) n/=i,p(cnt);
if (cnt) prm[p(tot)].fi=i,prm[tot].se=cnt;
}
if (n!=1) prm[p(tot)]=mk(n,1);
d[0]=1;S=1<<tot;
for (ri i(1);i<=tot;p(i)) fla[1<<i-1]=i;
for (ri i(1);i<S;p(i)) d[i]=d[i^lowbit(i)]*prm[fla[lowbit(i)]].se;
printf("%lld\n",dfs(0,0)-1);
return 0;
}
}
int main() {return nanfeng::main();}
NOIP 模拟 $32\; \rm Six$的更多相关文章
- NOIP 模拟 $32\; \rm Walker$
题解 \(by\;zj\varphi\) 发现当把 \(\rm scale×cos\theta,scale×sin\theta,dx,dy\) 当作变量时只有四个,两个方程就行. 当 \(\rm n\ ...
- NOIP 模拟 $32\; \rm Smooth$
题解 \(by\;zj\varphi\) 很简单的贪心题. 开 \(B\) 个队列,每个队列存最后一次乘上的数为当前队列编号的数. 每次去所有队列中队首的最小值,不用开堆,因为开堆用于将所有数排序,但 ...
- noip模拟32[好数学啊]
noip模拟32 solutions 真是无语子,又没上100,无奈死了 虽然我每次都觉得题很难,但是还是有好多上100的 战神都200多了,好生气啊啊啊 从题开始变难之后,我的时间分配越来越不均匀, ...
- 20190902+0903合集-NOIP模拟
一直没时间写QwQ 于是补一下. Day 1 晚饭吃的有点恶心…… $1s\,2s\,5s$ 还开 -O2 ?? 有点恐怖. T1 猛的一想: 把外面设成一个点, 向入口连一条权为排队时间的边 从出口 ...
- 2021.5.22 noip模拟1
这场考试考得很烂 连暴力都没打好 只拿了25分,,,,,,,,好好总结 T1序列 A. 序列 题目描述 HZ每周一都要举行升旗仪式,国旗班会站成一整列整齐的向前行进. 郭神作为摄像师想要选取其中一段照 ...
- NOIP模拟
1.要选一个{1,2,...n}的子集使得假如a和b在所选集合里且(a+b)/2∈{1,2,...n}那么(a+b)/2也在所选集合里 f[i]=2*f[i-1]-f[i-2]+g[i] g[n]:选 ...
- NOIP模拟3
期望得分:30+90+100=220 实际得分:30+0+10=40 T1智障错误:n*m是n行m列,硬是做成了m行n列 T2智障错误:读入三个数写了两个%d T3智障错误:数值相同不代表是同一个数 ...
- 7.22 NOIP模拟7
又是炸掉的一次考试 T1.方程的解 本次考试最容易骗分的一道题,但是由于T2花的时间太多,我竟然连a+b=c都没判..暴力掉了40分. 首先a+b=c,只有一组解. 然后是a=1,b=1,答案是c-1 ...
- NOIP模拟 1
NOIP模拟1,到现在时间已经比较长了.. 那天是6.14,今天7.18了 //然鹅我看着最前边缺失的模拟1,还是终于忍不住把它补上,为了保持顺序2345重新发布了一遍.. # 用 户 名 ...
随机推荐
- NSURLSession的简单使用
NSURLSession的简单使用(不同于NSURLConnection,仅仅支持异步请求) dataTask,简单请求直接block里面执行,不走代理 NSURLSessionDataTaskDel ...
- 【故障公告】redis 服务器宕机引发博客站点故障
非常抱歉,今天下午 17:10~17:40 左右,由于博客系统所使用的 redis 服务器宕机,造成博客站点无法正常访问,由此给您带来很大的麻烦,请您谅解. 我们会针对这次故障改进 redis 服务器 ...
- 网站图片无缝兼容 WebP/AVIF
前言 WebP 格式发布已有十余年,但不少站点至今仍未使用,只为兼顾极少数低版本浏览器.至于去年发布的 AVIF 格式,使用的站点就更少了. 然而图片往往是流量大户,与其费尽心机优化脚本体积,可能还不 ...
- MySQL 那些常见的错误设计规范
依托于互联网的发达,我们可以随时随地利用一些等车或坐地铁的碎片时间学习以及了解资讯.同时发达的互联网也方便人们能够快速分享自己的知识,与相同爱好和需求的朋友们一起共同讨论. 但是过于方便的分享也让知识 ...
- 【笔记】Python编程 从入门到实践 第二版(基础部分)
1 字符串相关函数 .title() # 将字符串每个单词的首字母大写 .upper() #不改变字符串变量的值 .lower() #不改变字符串变量的值 f"{var} ,字符串" ...
- 记录Jackson和Lombok的坑
记录Jackson和Lombok的坑 今天遇到Jackson反序列化json缺少了字段,后来研究下发现是Jackson的机制和Lombok生成的setter不一致,导致没有正确调用setter. 复现 ...
- Android系统编程入门系列之界面Activity响应丝滑的传统动画
上篇文章介绍了应用程序内对用户操作响应的相关方法位置,简单的响应逻辑可以是从一个界面Activity跳转到另一个界面Activity,也可以是某些视图View的相对变化.然而不管是启动一个界面执行新界 ...
- CRC校验原理
此文为转载文,原作者博客传送门 CRC校验原理 CRC校验原理看起来比较复杂,好难懂,因为大多数书上基本上是以二进制的多项式形式来说明的.其实很简单的问题,其根本思想就是先在要发送的帧后面附加一个数( ...
- 扩展中国剩余定理(exCRT)
我 tm--CRT 没看懂 exCRT 却看懂了--emmmm-- 而且这名字完全就是国内的 OI 带师胡起的吧-- 考虑一次同余方程组 \[\begin{cases} x \equiv a_1\ ( ...
- C++第四十八篇 -- 字符串分离方法
举例:Test_Bluetooth.exe -param_split Test_Bluetooth.cpp #include "pch.h" #include <iostre ...