分析:

后面的环能不能取下来与前面的环有关,前面的环不被后面的环所影响。所以先取最后面的环

设状态F(n)表示n个环全部取下来的最少步数

先取第n个环,就得使1~n-2个环属于被取下来的状态,第n-1个环属于未被取下来的状态。那么F(n) = F(n-2) + 1 + ... (这里的1表示取下第n个需要一步)

即F(n)可以为F(n-2) + 1与某些数的和。取下n后,1~n-2为取下的状态,n-1为未被取下的状态。如果我们想取下n-1,那么n-2要为未被取下来的状态且1~n-3为被取下的状态。

但是这里不能直接将n-2变成为未取下的状态,你想把n-2的状态改变,就得使n-3为未被取下来的状态且1~n-4为被取下的状态;你想把n-3的状态改变,就得使n-4为未被取下来的状态且1~n-5为被取下的状态.

这个一直递推下去你要使1~n-2全部属于未被取下的状态才能继续取n-1。

将1~n全部取下来有下列四步

第一步:取1~n-2,需要F(n-2)步

第二步:取第n个,需要1步

第三步:恢复1~n-2,需要F(n-2)步 (取下来的最少步数和恢复的最少步数是一样的,它们是对称的)

第四步:将1~n-1个全部取下来

所以:F(n) = F(n-1) + 2*F(n-2) + 1

矩阵快速幂套模板啦!

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; typedef long long ll;
const int Mod = 200907;
const int N = 5;
int msize; struct Mat
{
int mat[N][N];
}; Mat operator *(Mat a, Mat b)
{
Mat c;
memset(c.mat, 0, sizeof(c.mat));
for(int k = 0; k < msize; ++k)
for(int i = 0; i < msize; ++i)
if(a.mat[i][k])
for(int j = 0; j < msize; ++j)
if(b.mat[k][j])
c.mat[i][j] = ((ll)a.mat[i][k] * b.mat[k][j] + c.mat[i][j])%Mod;
return c;
} Mat operator ^(Mat a, int k)
{
Mat c;
memset(c.mat,0,sizeof(c.mat));
for(int i = 0; i < msize; ++i)
c.mat[i][i]=1;
for(; k; k >>= 1)
{
if(k&1) c = c*a;
a = a*a;
}
return c;
} int main()
{
int n;
msize = 3;
Mat A;
A.mat[0][0] = 1, A.mat[0][1] = 2, A.mat[0][2] = 1;
A.mat[1][0] = 1, A.mat[1][1] = 0, A.mat[1][2] = 0;
A.mat[2][0] = 0, A.mat[2][1] = 0, A.mat[2][2] = 1;
while(~scanf("%d",&n) && n)
{
if(n==1)
{
puts("1");
continue;
}
Mat ans = A^(n-2);
printf("%d\n", (ans.mat[0][0]*2 + ans.mat[0][1] + ans.mat[0][2])%Mod);
}
return 0;
}

hdu 2842 Chinese Rings 矩阵快速幂的更多相关文章

  1. HDU 2842 (递推+矩阵快速幂)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2842 题目大意:棒子上套环.第i个环能拿下的条件是:第i-1个环在棒子上,前i-2个环不在棒子上.每个 ...

  2. HDU 2842 Chinese Rings(矩阵高速功率+递归)

    职务地址:HDU 2842 这个游戏是一个九连环的游戏. 如果当前要卸下前n个环.由于要满足前n-2个都卸下,所以要先把前n-2个卸下.须要f(n-2)次.然后把第n个卸下须要1次,然后这时候要卸下第 ...

  3. HDU.1575 Tr A ( 矩阵快速幂)

    HDU.1575 Tr A ( 矩阵快速幂) 点我挑战题目 题意分析 直接求矩阵A^K的结果,然后计算正对角线,即左上到右下对角线的和,结果模9973后输出即可. 由于此题矩阵直接给出的,题目比较裸. ...

  4. hdu 3117 Fibonacci Numbers 矩阵快速幂+公式

    斐波那契数列后四位可以用快速幂取模(模10000)算出.前四位要用公式推 HDU 3117 Fibonacci Numbers(矩阵快速幂+公式) f(n)=(((1+√5)/2)^n+((1-√5) ...

  5. HDU 2842 Chinese Rings( 递推关系式 + 矩阵快速幂 )

    链接:传送门 题意:解 N 连环最少步数 % 200907 思路:对于 N 连环来说,解 N 连环首先得先解 N-2 连环然后接着解第 N 个环,然后再将前面 N-2 个环放到棍子上,然后 N 连环问 ...

  6. hdu 2604 Queuing(矩阵快速幂乘法)

    Problem Description Queues and Priority Queues are data structures which are known to most computer ...

  7. HDU 5950 - Recursive sequence - [矩阵快速幂加速递推][2016ACM/ICPC亚洲区沈阳站 Problem C]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5950 Farmer John likes to play mathematics games with ...

  8. 2013长春网赛1009 hdu 4767 Bell(矩阵快速幂+中国剩余定理)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4767 题意:求集合{1, 2, 3, ..., n}有多少种划分情况bell[n],最后结果bell[ ...

  9. HDU 6470 Count 【矩阵快速幂】(广东工业大学第十四届程序设计竞赛 )

    题目传送门:http://acm.hdu.edu.cn/showproblem.php?pid=6470 Count Time Limit: 6000/3000 MS (Java/Others)    ...

随机推荐

  1. Jira&Confluence服务器安装

    1.Mysql安装 参考https://confluence.atlassian.com/doc/database-setup-for-mysql-128747.html 创建相应的数据库 CREAT ...

  2. 065.Python框架Django-DRF

    一 WEB应用模式 在开发Web应用中,有两种应用模式: 1.1  前后端不分离 1.2 前后端分离 二  API接口 为了在团队内部形成共识.防止个人习惯差异引起的混乱,我们需要找到一种大家都觉得很 ...

  3. xpath定位中starts-with、contains、text()的用法

    starts-with 顾名思义,匹配一个属性开始位置的关键字 contains 匹配一个属性值中包含的字符串 text() 匹配的是显示文本信息,此处也可以用来做定位用 eg //input[sta ...

  4. make clean 和 make distclean区别-(转自秋水Leo)

    make clean仅仅是清除之前编译的可执行文件及配置文件. 而make distclean要清除所有生成的文件. Makefile 在符合GNU Makefiel惯例的Makefile中,包含了一 ...

  5. INFJ名言

    财富是由什么构成的? 按世俗的观点,就是占有金钱和财宝. 但如果我们用除金钱之外的其他方式来衡量财富, 那么许多在物质上匮乏的人在精神上却是富有的, 许多在物质上富有的人在精神上却是匮乏的. The ...

  6. CSS的引入方式和复合选择器

    CSS的引入方式 样式表 优点 缺点 范围 行内样式表 书写方便 结构样式混写 控制一个标签 内部样式表 部分结构和样式相分离 没有彻底 控制一个页面 外部样式表 完全实现结构和样式分离 需要引入 控 ...

  7. Win10 安装 Python3 (上)

    Python3 For Windows 10 installer 参考 The full installer 安装 随后可以看到,installer 在用户环境变量PATH中,添加了三项: 卸载 使用 ...

  8. win10家庭中文版CUDA+CUDNN+显卡GPU使用tensorflow-gpu训练模型安装过程(精华帖汇总+重新修改多次复现)

    查看安装包 pip list 本帖提供操作过程,具体操作网上有好多了,不赘述.红色字体为后来复现出现的问题以及批注 题外话: (1)python 的环境尽量保持干净,尽量单一,否则容易把自己搞晕,不知 ...

  9. CVPR目标检测与实例分割算法解析:FCOS(2019),Mask R-CNN(2019),PolarMask(2020)

    CVPR目标检测与实例分割算法解析:FCOS(2019),Mask R-CNN(2019),PolarMask(2020)1. 目标检测:FCOS(CVPR 2019)目标检测算法FCOS(FCOS: ...

  10. TVM自定义数据类型

    TVM自定义数据类型 本文将介绍"自定义数据类型"框架,该框架可在TVM中使用自定义数据类型. 介绍 在设计加速器时,关键是如何近似地表示硬件中的实数.这个问题具有长期的行业标准解 ...