hdu1232 并查集总结
前言
在一些有N个元素的集合应用问题中,我们通常是在开始时让每个元素构成一个单元素的集合,然后按一定顺序将属于同一组的元素所在的集合合并,其间要反复查找一个元素在哪个集合中。
这一类问题其特点是看似并不复杂,但数据量极大,若用正常的数据结构来描述的话,往往在空间上过大,计算机无法承受;即使在空间上勉强通过,运行的时间复杂度也极高,根本就不可能在规定的运行时间(1~3秒)内计算出试题需要的结果,只能用并查集来描述。
定义
并查集(Disjoint Set),即“不相交集合”,是一种树型的数据结构,用于处理一些不相交集合(Disjoint Sets)的合并及查询问题。常常在使用中以森林来表示。集就是让每个元素构成一个单元素的集合,也就是按一定顺序将属于同一组的元素所在的集合合并。
将编号分别为1…N的N个对象划分为不相交集合,在每个集合中,选择其中某个元素代表所在集合。
常见两种操作:
- 合并两个集合
- 查找某元素属于哪个集合
用编号最小的元素标记所在集合;定义一个数组set[1...n],其中set[i]表示元素i 所在的集合;

算法实现
查找
时间复杂度:\(O(1)\)
find1(x)
{
return set[x];
}
合并
时间复杂度:\(O(n)\)
Merge1(a,b)
{
i = min(a,b);
j = max(a,b);
for (k = 1; k <= N; k++) {
if (set[k] == j)
set[k] = i;
}
}
对于合并操作,必须搜索全部元素!有没有可以改进的地方呢?
算法的优化
使用树结构
每个集合用一棵“有根树”表示,定义数组set[1...n]
set[i] = i,则 i 表示本集合,并且是集合所对应树的根set[i] = j,j<>i,则 j 是 i 的父节点

查找
时间复杂度(最坏):\(O(n)\)
find2(x)
{
r = x;
while (set[r] != r)
r = set[r];
return r;
}
合并
时间复杂度:\(O(1)\)
merge2(a, b)
{
if (a<b)
set[b] = a;
else
set[a] = b;
}
避免最坏情况
方法:将深度小的树合并到深度大的树
实现:假设两棵树的深度分别为h1和h2, 合并后的树的高度为h,则
\begin{cases}
max(h1, h2), & \text{if h1<>h2} \\
h1+1, & \text{if h1=h2}
\end{cases}
\]
效果:任意顺序的合并操作以后,包含k个节点的树的最大高度不超过\(\log_2{k}\)
查找
时间复杂度:\(O(\log_2{n})\)
find2(x)
{
r = x;
while (set[r] != r)
r = set[r];
return r;
}
合并
时间复杂度:\(O(1)\)
merge3(a,b)
{
if (height(a) == height(b)) {
height(a) = height(a) + 1;
set[b] = a;
} else if (height(a) < height(b)) {
set[a] = b;
} else {
set[b] = a;
}
}
路径压缩
思想:每次查找的时候,如果路径较长,则修改信息,以便下次查找的时候速度更快。
步骤:
- 找到根结点
- 修改查找路径上的所有节点,将它们都指向根结点
路径压缩示意图:

查找
find3(x)
{
r = x;
while (set[r] != r) //循环结束,则找到根节点
r = set[r];
i = x;
while (i != r) //本循环修改查找路径中所有节点
{
j = set[i];
set[i] = r;
i = j;
}
}
hdu1232
#include<stdio.h>
int x[1005];
int min(int a,int b);
int max(int a,int b);
void xs(int a,int b);
int fine(int a);
int main()
{
int n,m,i,a,b;
while(scanf("%d",&n)&&n)
{
int sum = -1;
scanf("%d",&m);
for(i=1;i<=n;i++) x[i]=i; //首先把各自的父节点设为自身
for(i=1;i<=m;i++)
{
scanf("%d%d",&a,&b);
xs(a,b); //合并两个集合
}
for(i=1;i<=n;i++)
{
if(x[i]==i) sum++; //算出(最后不同集合的个数-1)即为所求
}
printf("%d\n",sum);
}
return 0;
}
int min(int a,int b)
{
return a<b ? a : b;
}
int max(int a,int b)
{
return a>b ? a : b;
}
int fine(int a)
{
if(x[a]==a) return a;
else return fine(x[a]);
}
void xs(int a,int b)
{
x[max(fine(a),fine(b))] = min(fine(a),fine(b));
}
hdu1232 并查集总结的更多相关文章
- hdu1232 并查集
1. hdu1232 2.链接:http://acm.hdu.edu.cn/showproblem.php?pid=1232 3.总结:简单并查集 #include<iostream> # ...
- 畅通工程--hdu1232(并查集)
畅通工程 Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submis ...
- 并查集入门(hdu1232“畅通工程”)
在学习并查集之前,首先需要明白基本的并查集可以完成的功能.并查集主要是用于处理不相交集合的合并问题.它是一种基础算法,在离散数学中,可以利用并查集求一个图的连通分支,利用其这个特性可以为我们解决一系列 ...
- hdu1232 城镇间修路(并查集)
问题是这样的: Problem Description 某省调查城镇交通状况,得到现有城镇道路统计表,表中列出了每条道路直接连通的城镇.省政府"畅通工程"的目标是使全省任何两个城镇 ...
- HDU1232 畅通工程 并查集
畅通工程 Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submis ...
- 【HDU1232】畅通工程(并查集基础题)
裸敲并查集,很水一次AC #include <iostream> #include <cstring> #include <cstdlib> #include &l ...
- [HDU1232] 畅通工程 (并查集 or 连通分量)
Input 测试输入包含若干测试用例.每个测试用例的第1行给出两个正整数,分别是城镇数目N ( < 1000 )和道路数目M:随后的M行对应M条道路,每行给出一对正整数,分别是该条道路直接连通的 ...
- 利用并查集+贪心解决 Hdu1232
畅通工程 Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submi ...
- HDU1232——畅通工程【并查集】
<题目链接> 题目大意: 利用并查集找出图中有几个不连通的城镇集合,所需修的道路数即为城镇集合-1. #include <stdio.h> ]; int find(int x) ...
随机推荐
- golang:Channel协程间通信
channel是Go语言中的一个核心数据类型,channel是一个数据类型,主要用来解决协程的同步问题以及协程之间数据共享(数据传递)的问题.在并发核心单元通过它就可以发送或者接收数据进行通讯,这在一 ...
- SSH连接自动断开的解决方法(deb/rpm)
######### 修改后的: ## # tail -f -n 20 sshd_config#MaxStartups 10:30:60#Banner /etc/issue.net # Allow cl ...
- Linux 性能监控工具
- 自动升压降压充电模块 最高25.2V
https://item.taobao.com/item.htm?id=39845484484 锂电池 https://item.taobao.com/item.htm?id=531166780681 ...
- IDEA 创建 Vue 文件(Day_41)
IDEA 创建 Vue 文件 1. 在setting-->plugins里安装vue插件,安装成功之后重启IDEA 如图 2. 在setting-->Editor-->File Ty ...
- 结合JVM 浅谈Java 类加载器(Day_03)
所谓错过,不是错了,而是过了. 什么是JAVA类加载? Class对象由JVM自动产生,每当一个类被加载时,JVM就自动为其生成一个Class对象,通过Class对象可以获得类的相关信息.将类信息读取 ...
- [论文阅读笔记] Community aware random walk for network embedding
[论文阅读笔记] Community aware random walk for network embedding 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问题 先前许多算法都 ...
- Netty 框架学习 —— Netty 组件与设计
Channel.EventLoop 和 ChannelFuture 这一节将对 Channel.EventLoop 和 ChannelFuture 类进行讨论,它们组合在一起,可以被认为是 Netty ...
- elasticsearch_dsl 操作
import elasticsearch from elasticsearch_dsl import Search, MultiSearch # Search-执行一个搜索,MultiSearch-同 ...
- Volatile 原理及使用,java并发中的可见性问题
1.解决并发编程中的可见性问题 volatile 代表不使用cpu缓存,修改后的数据,将直接刷到内存中,被volatile修饰的变量,读取的时候,也是从内存中读取,不从cpu缓存中读取 上代码 // ...