前言

在Python中,计算密集型任务适用于多进程,IO密集型任务适用于多线程

 

正常来讲,多线程要比多进程效率更高,因为进程间的切换需要的资源和开销更大,而线程相对更小,但是我们使用的Python大多数的解释器是Cpython,众所周知Cpython有个GIL锁,导致执行计算密集型任务时多线程实际只能是单线程,而且由于线程之间切换的开销导致多线程往往比实际的单线程还要慢,所以在 python 中计算密集型任务通常使用多进程,因为各个进程有各自独立的GIL,互不干扰。

 

而在IO密集型任务中,CPU时常处于等待状态,操作系统需要频繁与外界环境进行交互,如读写文件,在网络间通信等。在这期间GIL会被释放,因而就可以使用真正的多线程。

 

上面都是理论,接下来实战看看实际效果是否符合理论

练习

"""多线程多进程模拟执行效率"""

from multiprocessing import Pool
from threading import Thread
import time, math def simulation_IO(a):
"""模拟IO操作"""
time.sleep(3) def simulation_compute(a):
"""模拟计算密集型任务"""
for i in range(int(1e7)):
math.sin(40) + math.cos(40)
return def normal_func(func):
"""普通方法执行效率"""
for i in range(6):
func(i)
return def mp(func):
"""进程池中的map方法"""
with Pool(processes=6) as p:
res = p.map(func, list(range(6)))
return def asy(func):
"""进程池中的异步执行"""
with Pool(processes=6) as p:
result = []
for j in range(6):
a = p.apply_async(func, args=(j, ))
result.append(a)
res = [j.get() for j in result] def thread(func):
"""多线程方法"""
threads = []
for j in range(6):
t = Thread(target=func, args=(j, ))
threads.append(t)
t.start()
for t in threads:
t.join() def showtime(f, func, name):
"""
计算并展示函数的运行时间
:param f: 多进程和多线程的方法
:param func: 多进程和多线程方法中需要传入的函数
:param name: 方法的名字
:return:
"""
start_time = time.time()
f(func)
print(f"{name} time: {time.time() - start_time:.4f}s") def main(func):
"""
运行程序的主函数
:param func: 传入需要计算时间的函数名
"""
showtime(normal_func, func, "normal")
print()
print("------ 多进程 ------")
showtime(mp, func, "map")
showtime(asy, func, "async")
print()
print("----- 多线程 -----")
showtime(thread, func, "thread") if __name__ == "__main__":
print("------------ 计算密集型 ------------")
func = simulation_compute
main(func)
print()
print()
print()
print("------------ IO 密集型 ------------")
func = simulation_IO
main(func)

结果

线性执行 多进程(map) 多进程(async) 多线程
计算密集型 16.0284s 3.5236s 3.4367s 15.2142s
IO密集型 18.0201s 3.0945s 3.0809s 3.0041s

结论

从表格中很明显的可以看出:

  • 计算密集型任务的速度:多进程 >多线程> 单进程/线程
  • IO密集型任务速度: 多线程 > 多进程 > 单进程/线程。

所以,针对计算密集型任务使用多进程,针对IO密集型任务使用多线程

python进阶(15)多线程与多进程效率测试的更多相关文章

  1. Python进阶:多线程、多进程和线程池编程/协程和异步io/asyncio并发编程

    gil: gil使得同一个时刻只有一个线程在一个CPU上执行字节码,无法将多个线程映射到多个CPU上执行 gil会根据执行的字节码行数以及时间片释放gil,gil在遇到io的操作时候主动释放 thre ...

  2. python分别使用多线程和多进程获取所有股票实时数据

    python分别使用多线程和多进程获取所有股票实时数据   前一天简单介绍了python怎样获取历史数据和实时分笔数据,那么如果要获取所有上市公司的实时分笔数据,应该怎么做呢? 肯定有人想的是,用一个 ...

  3. python爬虫之多线程、多进程+代码示例

    python爬虫之多线程.多进程 使用多进程.多线程编写爬虫的代码能有效的提高爬虫爬取目标网站的效率. 一.什么是进程和线程 引用廖雪峰的官方网站关于进程和线程的讲解: 进程:对于操作系统来说,一个任 ...

  4. 第十章:Python高级编程-多线程、多进程和线程池编程

    第十章:Python高级编程-多线程.多进程和线程池编程 Python3高级核心技术97讲 笔记 目录 第十章:Python高级编程-多线程.多进程和线程池编程 10.1 Python中的GIL 10 ...

  5. python中的多线程和多进程

    一.简单理解一下线程和进程 一个进程中可有多个线程,线程之间可共享内存,进程间却是相互独立的.打比方就是,进程是火车,线程是火车厢,车厢内人员可以流动(数据共享) 二.python中的多线程和多进程 ...

  6. Python之threading多线程,多进程

    1.threading模块是Python里面常用的线程模块,多线程处理任务对于提升效率非常重要,先说一下线程和进程的各种区别,如图 概括起来就是 IO密集型(不用CPU) 多线程计算密集型(用CPU) ...

  7. Python系列之多线程、多进程

    线程是操作系统直接支持的执行单元,因此,高级语言通常都内置多线程的支持,Python也不例外,并且,Python的线程是真正的Posix Thread,而不是模拟出来的线程. Python的标准库提供 ...

  8. python爬虫之多线程、多进程、GIL锁

    背景: 我们知道多线程要比多进程效率更高,因为线程存在于进程之内,打开一个进程的话,首先需要开辟内存空间,占用内存空间比线程大.这样想也不怪,比如一个进程用10MB,开10个进程就得100MB的内存空 ...

  9. python之路-----多线程与多进程

    一.进程和线程的概念 1.进程(最小的资源单位): 进程:就是一个程序在一个数据集上的一次动态执行过程.进程一般由程序.数据集.进程控制块三部分组成. 程序:我们编写的程序用来描述进程要完成哪些功能以 ...

随机推荐

  1. 用注解开发SpringMVC

    Spring2.5以后,用注解开发SpringMVC的功能十分强大,注解也是SpringMVC的精髓.在实际开发中,都会使用注解来实现. 这让SpringMVC开发工作量最小化,开发者只要专注于业务逻 ...

  2. java对象克隆复制

    原文链接:https://blog.csdn.net/ztchun/article/details/79110096 自己先简单描述总结一下:当想要将一个对象中已有的值直接给另外一个对象的时候,其实并 ...

  3. Java中出现Unhandled exception的原因

    说明某个方法在方法声明上已经声明了会抛异常,那么在调用这个方法的时候,就必须做异常处理,处理的方式有2种,要么try-catch这个异常,要么继续往上一层抛出这个异常,这是java语法要求的,必须这么 ...

  4. python进阶(6)深拷贝和浅拷贝

    深拷贝和浅拷贝 不管对于浅拷贝.还是深拷贝,针对不可变对象str.int.tuple(有点特殊).boolean,它的内存地址是不变的,拷贝的仅仅是值 import copy a = 1 b = co ...

  5. 零基础学Python:数据容器

    1.常用操作 列表常用操作 在 ipython 中定义一个 列表,例如: l= list() 输入 l. 按下 TAB 键, ipython 会提示 字典 能够使用的函数如下: 可以到官方网址查询使用 ...

  6. SSH免密登陆和设置别名

    目录 SSH免密登陆 SSH别名登陆 常见问题 SSH免密登陆 本机生成SSH私钥和公钥 ssh-keygen -t rsa 这样会在当前目录生成名为id_rsa的私钥文件和名为id_rsa.pub的 ...

  7. Pyqt5——表格中隐藏的控件(Model/View/Delegate)

    需求:在TableView表格中点击单元格可以实现编辑功能.性别由LineEdite控件编辑,年龄由spinBox控件编辑. 实现:(1)使用Qt的model-view模式生成表格视图.    (2) ...

  8. 人脸检测数据源制作与基于caffe构架的ALEXNET神经网络训练

    本篇文章主要记录的是人脸检测数据源制作与ALEXNET网络训练实现检测到人脸(基于caffe). 1.数据获取 数据获取: ① benchmark是一个行业的基准(数据库.论文.源码.结果),例如WI ...

  9. 剑指 Offer 32 - I. 从上到下打印二叉树 + 层次遍历二叉树

    剑指 Offer 32 - I. 从上到下打印二叉树 Offer_32_1 题目描述 解题思路 这题属于简单题,考察的是我们对二叉树以及层次遍历的方法. 这里只需要使用简单的队列即可完成二叉树的层次遍 ...

  10. SnowNLP——获取关键词(keywords(1))

    一.SnowNLP的获取文本关键词 前面介绍了SnowNLP的获取关键词的方法,这里再重现一下 1 from snownlp import SnowNLP 2 # 提取文本关键词,总结3个关键词 3 ...