[USACO18DEC]Sort It Out P
初看本题毫无思路,只能从特殊的 \(K = 1\) 出发。
但是直接考虑构造一组字典序最小的方案还是不好构造,可以考虑先手玩一下样例。通过自己手玩的样例可以发现,貌似没有被选出来的数在原排列中都是递增的子序列。比如说 \(1 \ 6 \ 5 \ 3 \ 4 \ 2\) 可以证明 \(2 \ 5 \ 6\) 是字典序最小的方案,那么剩下的数按照在原排列中的顺序依次写下是 \(1 \ 3 \ 4\) 是一个递增序列。可以思考一下为什么会有这样的结论出现。
不难发现不论我们怎么操作,原来序列中顺序对的相对位置必然是不会变动的。比如说上方的 \(1 \ 3 \ 4\) 不论怎么变换 \(1\) 都会在 \(3\) 之前,\(3\) 都会在 \(4\) 之前。并且你会发现将剩下的所有数按照字典序依次进行操作是能让这个排列重新排好的。于是我们可以得到一个结论,原排列中的任意一个递增序列保留下来剩下的作为一个操作集合都能时这个排列重新排好。
既然如此,为了让操作集合字典序最小,相反我们需要让保留集合字典序最大。因此保留集合就一定需要选择最长递增子序列中字典序最大的那个。可以考虑每次贪心地选取能拼成最长递增子序列中的最大的元素即可,具体实现可以先求出 \(dp_i\) 表示以 \(i\) 位置结尾的最长递增子序列长度。最后将每个位置按照 \(dp\) 值为第一关键字,按照 \(a_i\) 为第二关键字排序即可。
那么回来思考原问题,字典序第 \(K\) 小的方案怎么求。不难发现实际上我们还是要求保留集合第 \(K\) 大的方案。于是可以考虑从低到高位逐步确定选择的集合,那么我们就需要求出 \(dp_i\) 表示以 \(i\) 开头的最长递增子序列的数量。可以先考虑一个朴素的求法,令 \(f_i\) 为以 \(i\) 开头的最长递增子序列的长度,那么会有转移:
\]
实际上又因为 \(f_i = \max\limits_{a_i < a_j, i < j} f_j + 1\),实际上我们的 \(dp\) 就是求权值在一段后缀中 \(f\) 最大值的数量,这个可以直接在权值线段树上实现,于是我们就将求 \(dp_i\) 的复杂度降至 \(O(n \log n)\)。
那么最后确定第 \(K\) 大的保留集合时,将所有 \(dp\) 值相同的位置压入到一个 \(vector\) 当中并按照权值为第二关键字排序,依次确定每个位即可。
需要注意的是 \(dp_i\) 的数量可能会爆 \(long long\) 但因为我们只需要和 \(K\) 比大小所以需要随时将 \(dp\) 值与 \(1e18\) 取 \(\min\)。
#include <bits/stdc++.h>
using namespace std;
#define int long long
#define ls (p << 1)
#define rs (p << 1 | 1)
#define mid (l + r >> 1)
#define rep(i, l, r) for (int i = l; i <= r; ++i)
#define dep(i, l, r) for (int i = r; i >= l; --i)
const int N = 100000 + 5;
const int inf = 1000000000000000001;
struct tree {
int mx, cnt;
}dp[N], t[N << 2];
int n, k, len, ans, a[N], book[N];
vector <int> G[N];
int read() {
char c; int x = 0, f = 1;
c = getchar();
while (c > '9' || c < '0') { if(c == '-') f = -1; c = getchar();}
while (c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
tree up(tree x, tree y) {
tree ans;
if(x.mx > y.mx) ans = x;
else if(x.mx < y.mx) ans = y;
else ans.mx = x.mx, ans.cnt = min(x.cnt + y.cnt, inf);
return ans;
}
void update(int p, int l, int r, int x, int y, tree k) {
if(l >= x && r <= y) { t[p] = k; return;}
if(mid >= x) update(ls, l, mid, x, y, k);
if(mid < y) update(rs, mid + 1, r, x, y, k);
t[p] = up(t[ls], t[rs]);
}
tree query(int p, int l, int r, int x, int y) {
if(l >= x && r <= y) return t[p];
tree ans; ans.mx = ans.cnt = 0;
if(mid >= x) ans = up(ans, query(ls, l, mid, x, y));
if(mid < y) ans = up(ans, query(rs, mid + 1, r, x, y));
return ans;
}
bool cmp(int x, int y) {
return a[x] > a[y];
}
signed main() {
n = read(), k = read();
rep(i, 1, n) a[i] = read();
dep(i, 1, n) {
dp[i] = query(1, 1, n, a[i], n);
++dp[i].mx, dp[i].cnt = (dp[i].mx == 1 ? dp[i].cnt + 1 : dp[i].cnt);
update(1, 1, n, a[i], a[i], dp[i]);
G[dp[i].mx].push_back(i), len = max(len, dp[i].mx);
}
rep(i, 1, len) sort(G[i].begin(), G[i].end(), cmp);
int P = 0;
dep(i, 1, len) {
for (int j = 0; j < G[i].size(); ++j) if(G[i][j] > P && a[G[i][j]] > a[P]) {
if(dp[G[i][j]].cnt < k) k -= dp[G[i][j]].cnt;
else { P = G[i][j]; break;}
}
book[a[P]] = 1; if(P != n + 1 && !ans) ans = i;
}
printf("%lld\n", n - ans);
rep(i, 1, n) if(!book[i]) printf("%lld\n", i);
return 0;
}
值得一提的是,在这种最优性问题毫无思路时,可以通过手玩样例发现一些策略和性质。
[USACO18DEC]Sort It Out P的更多相关文章
- 题解-USACO18DEC Sort It Out
Problem 洛谷5156 题意概要:给定一个长为\(n\)的排列,可以选择一个集合\(S\)使这个集合内部元素排到自己在整个序列中应该在的位置(即对于集合\(S\)内的每一个元素\(i\),使其排 ...
- 洛谷P5156 [USACO18DEC]Sort It Out
这题就是让你求字典序第k小的最短乱序子序列 转换一下,其实就是字典序第k大的最长上升子序列 就统计一下以i结尾的最长上升子序列\(f[i]\),长度为i的上升子序列的开头组成的集合\(v[i]\),转 ...
- p5156 [USACO18DEC]Sort It Out
传送门 分析 我们发现对于没有发现的点相对位置不会发生改变 于是我们可以吧问题转化为求一个lis 于是我们字典序第k小的答案就是字典序第k大的lis 代码 #include<iostream&g ...
- [USACO18DEC]Sort It Out(树状数组)
[Luogu5156] 题解 求字典序第 k 小的满足题意的集合,取反一下,就是求序列中字典序第 k 大的最长上升子序列 [51nod1376] 最长递增子序列的数量 置 \(f_{i}\)表示以权值 ...
- [算法]——归并排序(Merge Sort)
归并排序(Merge Sort)与快速排序思想类似:将待排序数据分成两部分,继续将两个子部分进行递归的归并排序:然后将已经有序的两个子部分进行合并,最终完成排序.其时间复杂度与快速排序均为O(nlog ...
- [算法]——快速排序(Quick Sort)
顾名思义,快速排序(quick sort)速度十分快,时间复杂度为O(nlogn).虽然从此角度讲,也有很多排序算法如归并排序.堆排序甚至希尔排序等,都能达到如此快速,但是快速排序使用更加广泛,以至于 ...
- shell之sort命令
1 sort的工作原理 sort将文件的每一行作为一个单位,相互比较,比较原则是从首字符向后,依次按ASCII码值进行比较,最后将他们按升序输出. [rocrocket@rocrocket progr ...
- 详细解说 STL 排序(Sort)
0 前言: STL,为什么你必须掌握 对于程序员来说,数据结构是必修的一门课.从查找到排序,从链表到二叉树,几乎所有的算法和原理都需要理解,理解不了也要死记硬背下来.幸运的是这些理论都已经比较成熟,算 ...
- SQL Tuning 基础概述06 - 表的关联方式:Nested Loops Join,Merge Sort Join & Hash Join
nested loops join(嵌套循环) 驱动表返回几条结果集,被驱动表访问多少次,有驱动顺序,无须排序,无任何限制. 驱动表限制条件有索引,被驱动表连接条件有索引. hints:use_n ...
随机推荐
- CausalVAE: Disentangled Representation Learning via Neural Structural Causal Models
目录 概 主要内容 模型 ELBO 关于 Yang M., Liu F., Chen Z., Shen X., Hao J. and Wang J. CausalVAE: disentangled r ...
- Hadoop开启Kerberos安全模式
Hadoop开启Kerberos安全模式, 基于已经安装好的Hadoop的2.7.1环境, 在此基础上开启Kerberos安全模式. 1.安装规划 已经安装好Hadoop的环境 10.43.159.7 ...
- MongoDB 变更流(Change Stream)介绍
1. 什么是Change Stream Change Stream 是MongoDB用于实现变更追踪的解决方案,类似于关系数据库的触发器,但原理不完全相同: | | Change Stream | 触 ...
- shc命令
今天在公司看到业务系统有一个query.viewtx 等等命令.虽然不知道是什么语言写的,但是里边内容是看不到的. 如果是编译型语言这样的结果 我并不奇怪.但是如果我们写了一个shell脚本 如果加密 ...
- 《手把手教你》系列技巧篇(五十五)-java+ selenium自动化测试-上传文件-下篇(详细教程)
1.简介 在实际工作中,我们进行web自动化的时候,文件上传是很常见的操作,例如上传用户头像,上传身份证信息等.所以宏哥打算按上传文件的分类对其进行一下讲解和分享. 2.为什么selenium没有提供 ...
- 新装CentOS7用yum安装软件提示 cannot find a valid baseurl for repobase7x86_64
1.打开网络配置文件:vi /etc/sysconfig/network-scripts/ifcfg-ens33(每个机子都可能不一样,但格式会是"ifcfg-e..."). 2. ...
- springboot + mybatis plus使用insert 语句并返回主键
mapper文件 映射文件中在insert中设置useGeneratedKeys为true,keyProperty设置为主键名称 <insert id="addEmployees&qu ...
- Centos 7 上 查看MySQL当前使用的配置文件my.cnf的方法
my.cnf是mysql启动时加载的配置文件,一般会放在mysql的安装目录中,用户也可以放在其他目录加载.总的来说,my.cnf类似与window中my.ini 使用locate my.cnf命令可 ...
- Visual Studio 2019 与 Visual Studio 2022的下载方式
相信大家目前百度或者其他搜索引擎搜索到的都是2022了,那么vs2019该如何安装呢? vs2019下载地址:https://visualstudio.microsoft.com/zh-hans/th ...
- 使用 SourceGenerator 简化 Options 绑定
目录 摘要 Options 绑定 使用 SourceGenerator 简化 如何 Debug SourceGenerator 如何 Format 生成的代码 使用方法 SourceCode & ...