[USACO18DEC]Sort It Out P
初看本题毫无思路,只能从特殊的 \(K = 1\) 出发。
但是直接考虑构造一组字典序最小的方案还是不好构造,可以考虑先手玩一下样例。通过自己手玩的样例可以发现,貌似没有被选出来的数在原排列中都是递增的子序列。比如说 \(1 \ 6 \ 5 \ 3 \ 4 \ 2\) 可以证明 \(2 \ 5 \ 6\) 是字典序最小的方案,那么剩下的数按照在原排列中的顺序依次写下是 \(1 \ 3 \ 4\) 是一个递增序列。可以思考一下为什么会有这样的结论出现。
不难发现不论我们怎么操作,原来序列中顺序对的相对位置必然是不会变动的。比如说上方的 \(1 \ 3 \ 4\) 不论怎么变换 \(1\) 都会在 \(3\) 之前,\(3\) 都会在 \(4\) 之前。并且你会发现将剩下的所有数按照字典序依次进行操作是能让这个排列重新排好的。于是我们可以得到一个结论,原排列中的任意一个递增序列保留下来剩下的作为一个操作集合都能时这个排列重新排好。
既然如此,为了让操作集合字典序最小,相反我们需要让保留集合字典序最大。因此保留集合就一定需要选择最长递增子序列中字典序最大的那个。可以考虑每次贪心地选取能拼成最长递增子序列中的最大的元素即可,具体实现可以先求出 \(dp_i\) 表示以 \(i\) 位置结尾的最长递增子序列长度。最后将每个位置按照 \(dp\) 值为第一关键字,按照 \(a_i\) 为第二关键字排序即可。
那么回来思考原问题,字典序第 \(K\) 小的方案怎么求。不难发现实际上我们还是要求保留集合第 \(K\) 大的方案。于是可以考虑从低到高位逐步确定选择的集合,那么我们就需要求出 \(dp_i\) 表示以 \(i\) 开头的最长递增子序列的数量。可以先考虑一个朴素的求法,令 \(f_i\) 为以 \(i\) 开头的最长递增子序列的长度,那么会有转移:
\]
实际上又因为 \(f_i = \max\limits_{a_i < a_j, i < j} f_j + 1\),实际上我们的 \(dp\) 就是求权值在一段后缀中 \(f\) 最大值的数量,这个可以直接在权值线段树上实现,于是我们就将求 \(dp_i\) 的复杂度降至 \(O(n \log n)\)。
那么最后确定第 \(K\) 大的保留集合时,将所有 \(dp\) 值相同的位置压入到一个 \(vector\) 当中并按照权值为第二关键字排序,依次确定每个位即可。
需要注意的是 \(dp_i\) 的数量可能会爆 \(long long\) 但因为我们只需要和 \(K\) 比大小所以需要随时将 \(dp\) 值与 \(1e18\) 取 \(\min\)。
#include <bits/stdc++.h>
using namespace std;
#define int long long
#define ls (p << 1)
#define rs (p << 1 | 1)
#define mid (l + r >> 1)
#define rep(i, l, r) for (int i = l; i <= r; ++i)
#define dep(i, l, r) for (int i = r; i >= l; --i)
const int N = 100000 + 5;
const int inf = 1000000000000000001;
struct tree {
int mx, cnt;
}dp[N], t[N << 2];
int n, k, len, ans, a[N], book[N];
vector <int> G[N];
int read() {
char c; int x = 0, f = 1;
c = getchar();
while (c > '9' || c < '0') { if(c == '-') f = -1; c = getchar();}
while (c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
tree up(tree x, tree y) {
tree ans;
if(x.mx > y.mx) ans = x;
else if(x.mx < y.mx) ans = y;
else ans.mx = x.mx, ans.cnt = min(x.cnt + y.cnt, inf);
return ans;
}
void update(int p, int l, int r, int x, int y, tree k) {
if(l >= x && r <= y) { t[p] = k; return;}
if(mid >= x) update(ls, l, mid, x, y, k);
if(mid < y) update(rs, mid + 1, r, x, y, k);
t[p] = up(t[ls], t[rs]);
}
tree query(int p, int l, int r, int x, int y) {
if(l >= x && r <= y) return t[p];
tree ans; ans.mx = ans.cnt = 0;
if(mid >= x) ans = up(ans, query(ls, l, mid, x, y));
if(mid < y) ans = up(ans, query(rs, mid + 1, r, x, y));
return ans;
}
bool cmp(int x, int y) {
return a[x] > a[y];
}
signed main() {
n = read(), k = read();
rep(i, 1, n) a[i] = read();
dep(i, 1, n) {
dp[i] = query(1, 1, n, a[i], n);
++dp[i].mx, dp[i].cnt = (dp[i].mx == 1 ? dp[i].cnt + 1 : dp[i].cnt);
update(1, 1, n, a[i], a[i], dp[i]);
G[dp[i].mx].push_back(i), len = max(len, dp[i].mx);
}
rep(i, 1, len) sort(G[i].begin(), G[i].end(), cmp);
int P = 0;
dep(i, 1, len) {
for (int j = 0; j < G[i].size(); ++j) if(G[i][j] > P && a[G[i][j]] > a[P]) {
if(dp[G[i][j]].cnt < k) k -= dp[G[i][j]].cnt;
else { P = G[i][j]; break;}
}
book[a[P]] = 1; if(P != n + 1 && !ans) ans = i;
}
printf("%lld\n", n - ans);
rep(i, 1, n) if(!book[i]) printf("%lld\n", i);
return 0;
}
值得一提的是,在这种最优性问题毫无思路时,可以通过手玩样例发现一些策略和性质。
[USACO18DEC]Sort It Out P的更多相关文章
- 题解-USACO18DEC Sort It Out
Problem 洛谷5156 题意概要:给定一个长为\(n\)的排列,可以选择一个集合\(S\)使这个集合内部元素排到自己在整个序列中应该在的位置(即对于集合\(S\)内的每一个元素\(i\),使其排 ...
- 洛谷P5156 [USACO18DEC]Sort It Out
这题就是让你求字典序第k小的最短乱序子序列 转换一下,其实就是字典序第k大的最长上升子序列 就统计一下以i结尾的最长上升子序列\(f[i]\),长度为i的上升子序列的开头组成的集合\(v[i]\),转 ...
- p5156 [USACO18DEC]Sort It Out
传送门 分析 我们发现对于没有发现的点相对位置不会发生改变 于是我们可以吧问题转化为求一个lis 于是我们字典序第k小的答案就是字典序第k大的lis 代码 #include<iostream&g ...
- [USACO18DEC]Sort It Out(树状数组)
[Luogu5156] 题解 求字典序第 k 小的满足题意的集合,取反一下,就是求序列中字典序第 k 大的最长上升子序列 [51nod1376] 最长递增子序列的数量 置 \(f_{i}\)表示以权值 ...
- [算法]——归并排序(Merge Sort)
归并排序(Merge Sort)与快速排序思想类似:将待排序数据分成两部分,继续将两个子部分进行递归的归并排序:然后将已经有序的两个子部分进行合并,最终完成排序.其时间复杂度与快速排序均为O(nlog ...
- [算法]——快速排序(Quick Sort)
顾名思义,快速排序(quick sort)速度十分快,时间复杂度为O(nlogn).虽然从此角度讲,也有很多排序算法如归并排序.堆排序甚至希尔排序等,都能达到如此快速,但是快速排序使用更加广泛,以至于 ...
- shell之sort命令
1 sort的工作原理 sort将文件的每一行作为一个单位,相互比较,比较原则是从首字符向后,依次按ASCII码值进行比较,最后将他们按升序输出. [rocrocket@rocrocket progr ...
- 详细解说 STL 排序(Sort)
0 前言: STL,为什么你必须掌握 对于程序员来说,数据结构是必修的一门课.从查找到排序,从链表到二叉树,几乎所有的算法和原理都需要理解,理解不了也要死记硬背下来.幸运的是这些理论都已经比较成熟,算 ...
- SQL Tuning 基础概述06 - 表的关联方式:Nested Loops Join,Merge Sort Join & Hash Join
nested loops join(嵌套循环) 驱动表返回几条结果集,被驱动表访问多少次,有驱动顺序,无须排序,无任何限制. 驱动表限制条件有索引,被驱动表连接条件有索引. hints:use_n ...
随机推荐
- sofaBoot
SOFABoot 和 SOFARPC 都是蚂蚁金服开源的 SOFA 技术栈的开源项目,SOFARPC 只是其 SOFA 技术栈体系(SOFAStack)中的一个 RPC 框架. SOFABoot 也是 ...
- 「算法笔记」旋转 Treap
一.引入 随机数据中,BST 一次操作的期望复杂度为 \(\mathcal{O}(\log n)\). 然而,BST 很容易退化,例如在 BST 中一次插入一个有序序列,将会得到一条链,平均每次操作的 ...
- Proximal Algorithms 6 Evaluating Proximal Operators
目录 一般方法 二次函数 平滑函数 标量函数 一般的标量函数 多边形 对偶 仿射集合 半平面 Box Simplex Cones 二阶锥 半正定锥 指数锥 Pointwise maximum and ...
- SQL Server 数据库添加主键,唯一键,外键约束脚本
-- 声明使用数据库use 数据库;go -- 添加主键(primary key)约束-- 基本语法-- 判断主键约束是否存在,如果存在则删除,不存在则添加if exists(select * fro ...
- C#中的值传递与引用传递(in、out、ref)
在C#中,方法.构造函数可以拥有参数,当调用方法或者构造函数时,需要提供参数,而参数的传递方式有两种(以方法为例): 值传递 值类型对象传递给方法时,传递的是值类型对象的副本而不是值类型对象本身.常用 ...
- 字符串的展开expand
A. 字符串的展开(expand.cpp) 内存限制:64 MiB 时间限制:1000 ms 标准输入输出 题目类型:传统 评测方式:文本比较 题目描述 在初赛普及组的"阅读程序写结果&qu ...
- vue - 搭建 webapp 自适应项目-使用 vant 组件库 并 可自动调节大小
1.创建个vue 项目,这里不详细写怎么创建,参考 vue - 指令创建 vue工程 - 岑惜 - 博客园 (cnblogs.com) https://www.cnblogs.com/c2g52013 ...
- layui父表单获取子表单的值完成修改操作
最近在做项目时,学着用layui开发后台管理系统. 但在做编辑表单时遇到了一个坑. 点击编辑时会出现一个弹窗. 我们需要从父表单传值给子表单.content是传值给子表单 layer.open({ t ...
- [login] 调用失败 Error: errCode: -404011 cloud function execution error | errMsg: cloud.callFunction:fail requestID , cloud function service error code -501000, error message Environment not found;
按照微信开放文档,创建完云开发项目,运行,点击获取openid,报如下错: [login] 调用失败 Error: errCode: -404011 cloud function execution ...
- Flowable实战(一)启动第一个完整流程
一.前言: 发现网上关于Flowable的资料基本都是浅尝辄止,对如何构建一个企业级的流程应用说明很少,所以写个实战系列,希望对大家和自己,都有所帮助. 二.认识Flowable Flowab ...