P5404-[CTS2019]重复【KMP,dp】
正题
题目链接:https://www.luogu.com.cn/problem/P5404
题目大意
给出一个字符串\(S\),然后求有多少个长度为\(m\)的串\(T\)满足。无限多个串\(T\)拼接起来后能找出一个长度和\(S\)相等的子串字典序比\(S\)小。
\(1\leq |S|,m\leq 2000\)
解题思路
首先有一个小于的很难找,所以我们找有多少一直大于等于的减去就好了。
然后其实如果有一个大于位置大于\(S\)串匹配就可以直接不管,所以其实我们主要考虑前面都相等的情况,(根据题解)考虑用\(KMP\)。
设我们现在匹配到\([1,k]\),然后有\([1,nxt_k]=[k-nxt_k+1,k]\),然后加了一个字符如果有跳的边而且是转移边里面字符最大的,因为我们显然需要匹配出一个最大的前缀不然不能保证有小于的时候能直接找到。
而且如果我们现在在\(KMP\)上走了\(T^{\infty}\)之后节点是\(i\),那么\(T^{\infty}T\)也是会匹配回到节点\(i\)的,所以相当于我们要找一个节点\(p\)使得它匹配了\(T\)之后仍然是回到节点\(p\)。
暴力枚举节点来\(dp\)肯定是会\(T\),考虑优化一下。
不难发现如果一个点走\(m\)步之后没有回到过\(0\)号节点的话方案只有一种(因为每个点连接\(0\)以外的出边最多只有一条)。
所以设\(f_{i,j}\)表示从\(0\)出发走\(j\)步到达\(i\)的方案数。
然后对于起点枚举多少步后走到\(0\)再用\(f\)统计答案就好了。
时间复杂度\(O(nm)\)
code
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const ll N=2100,P=998244353;
ll n,m,ans,nxt[N],ch[N][26],f[N][N],mx[N];
char s[N];
signed main()
{
scanf("%lld%s",&m,s+1);
n=strlen(s+1);ans=1;
for(ll i=1;i<=m;i++)ans=ans*26ll%P;
for(ll i=2,j=0;i<=n;i++){
while(j&&s[i]!=s[j+1])j=nxt[j];
j+=(s[i]==s[j+1]);nxt[i]=j;
}
for(ll i=0;i<=n;i++)
for(ll c=0;c<26;c++){
if(s[i+1]==c+'a')ch[i][c]=i+1;
else ch[i][c]=ch[nxt[i]][c];
if(ch[i][c])mx[i]=c;
}
f[0][0]=1;
for(ll i=0;i<m;i++)
for(ll j=0;j<=n;j++)
for(ll c=mx[j];c<26;c++)
(f[ch[j][c]][i+1]+=f[j][i])%=P;
for(ll i=0;i<=n;i++){
ll x=i;
for(ll j=1;j<=m;j++){
(ans-=(25-mx[x])*f[i][m-j]%P)%=P;
x=ch[x][mx[x]];
if(!x)break;
}
if(i&&x==i)(ans+=P-1)%=P;
}
printf("%lld\n",(ans+P)%P);
return 0;
}
P5404-[CTS2019]重复【KMP,dp】的更多相关文章
- LOJ3123 CTS2019 重复 KMP自动机、DP、多项式求逆
传送门 CTS的计数题更完辣(撒花 Orz zx2003,下面的内容在上面的博客基础上进行一定的补充. 考虑计算无限循环之后不存在子串比\(s\)字典序小的串的个数.先对串\(s\)建立KMP自动机, ...
- [HDOJ5763]Another Meaning(KMP, DP)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5763 题意:给定两个字符串a和b,其中a中的字符串如果含有子串b,那么那部分可以被替换成*.问有多少种 ...
- POJ 3336 Count the string (KMP+DP,好题)
参考连接: KMP+DP: http://www.cnblogs.com/yuelingzhi/archive/2011/08/03/2126346.html 另外给出一个没用dp做的:http:// ...
- 【KMP+DP】Count the string
KMP算法的综合练习 DP很久没写搞了半天才明白.本题结合Next[]的意义以及动态规划考察对KMP算法的掌握. Problem Description It is well known that A ...
- codeforces432D Prefixes and Suffixes(kmp+dp)
转载请注明出处: http://www.cnblogs.com/fraud/ ——by fraud D. Prefixes and Suffixes You have a strin ...
- [kmp+dp] hdu 4628 Pieces
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4622 Reincarnation Time Limit: 6000/3000 MS (Java/Ot ...
- 洛谷P3193 [HNOI2008]GT考试 kmp+dp
正解:kmp+dp+矩阵优化 解题报告: 传送门! 啊刚说想做矩阵优化dp的字符串题就找到辣QwQ虽然不是AC自动机的但都差不多嘛QwQ 首先显然可以想到一个dp式?就f[i][j]:凑出i位了,在s ...
- [BZOJ1009] [HNOI2008] GT考试(KMP+dp+矩阵快速幂)
[BZOJ1009] [HNOI2008] GT考试(KMP+dp+矩阵快速幂) 题面 阿申准备报名参加GT考试,准考证号为N位数X1X2-.Xn,他不希望准考证号上出现不吉利的数字.他的不吉利数学A ...
- HDU 6153 A Secret ( KMP&&DP || 拓展KMP )
题意 : 给出两个字符串,现在需要求一个和sum,考虑第二个字符串的所有后缀,每个后缀对于这个sum的贡献是这个后缀在第一个字符串出现的次数*后缀的长度,最后输出的答案应当是 sum % 1e9+7 ...
- 2021.11.09 P3426 [POI2005]SZA-Template(KMP+DP)
2021.11.09 P3426 [POI2005]SZA-Template(KMP+DP) https://www.luogu.com.cn/problem/P3426 题意: 你打算在纸上印一串字 ...
随机推荐
- 使用F#编写PowerShell模块
▲F#和PowerShell模块 作为可能是人类世界最强大的Shell,PowerShell最大的特点是能够直接在命令间传递.NET对象,而支持这种能力的命令被称作cmdlet.自己编写PowerSh ...
- MySQL:互联网公司常用分库分表方案汇总!
转载别人 一.数据库瓶颈 不管是IO瓶颈,还是CPU瓶颈,最终都会导致数据库的活跃连接数增加,进而逼近甚至达到数据库可承载活跃连接数的阈值.在业务Service来看就是,可用数据库连接少甚至无连接可用 ...
- WPF 中的 路由事件
public class ReportTimeEventArgs:RoutedEventArgs { public ReportTimeEventArgs(RoutedEvent routedEven ...
- HttpClient4.3 教程 第五章 快速API
5.1.Easy to use facade API HttpClient从4.2开始支持快速api.快速api仅仅实现了HttpClient的基本功能,它只要用于一些不需要灵活性的简单场景.例如,快 ...
- Linux centos 安装 maven 3.5.4
一.maven下载 1.官方下载 打开网址:http://maven.apache.org/download.cgi 下拉滚动条,找到标记处并点击 选择自己想要的版本,我这里选择的是 3.5.4,然后 ...
- CNN的Pytorch实现(LeNet)
CNN的Pytorch实现(LeNet) 上次写了一篇CNN的详解,可是累坏了老僧我.写完后拿给朋友看,朋友说你这Pytorch的实现方式对于新人来讲会很不友好,然后反问我说里面所有的细节你都明白 ...
- JAVA《多线程多人上线通知案例》
package com.wangbiao.palyermanager; import com.wangbiao.player.Player; /** * TODO * * @author wangbi ...
- 高德地图——添加标记的两种方法&删除地标记的两种方法
添加标记: 1.marker.setMap(map); 2.marker.add([marker]); 删除标记: 1.marker.setMap(null); 2 map.remove([marke ...
- IDEA常用设置及推荐插件
IDEA常用设置及推荐插件 本文主要记录IDEA的一些常用设置,IDEA与Eclipse的常用快捷键对比及推荐一些好用的插件. 基本设置 设置界面风格及修改外部UI尺寸大小 打开IDEA时设置不重新打 ...
- k8s笔记0528-基于KUBERNETES构建企业容器云手动部署集群记录-2
三.ETCD集群部署 类似于走zookeeper集群分布式协调服务,可做以key v形式存储在ETCD中. 官方链接:https://github.com/coreos/etcd 分布式kv存储,为分 ...