正题

题目链接:https://www.luogu.com.cn/problem/P4774


题目大意

\(n\)个龙血量为\(a_i\),回复能力为\(p_i\),死亡后掉落剑的攻击力\(t_i\),\(m\)把剑,攻击力为\(b_i\)。

从\(1\)开始打,每次使用不大于当前龙血量的剑中攻击力最低的一把(没有就用攻击力最低的),造成\(x\times atk\)点伤害,然后当前的剑坏掉。

求一个最小的\(x\)使得所有龙被攻击后血量是\(p_i\)的倍数。

\(1\leq n,m\leq 10^5\),满足\(p=1\)或者\(a_i\leq p_i\),所有\(p_i\)的公倍数不超过\(10^{12}\)


解题思路

额,先用\(set\)处理出每个龙用哪把剑打\(c_i\),然后就是对于每条龙的条件就是

\[c_ix\equiv a_i(mod\ p_i),c_ix\geq a_i
\]

后面那个条件可以去掉,我们先求出满足所有\(c_ix\geq a_i\)的最小\(x\),后面再调整。

然后前面那个东西可以用\(EXCRT\)搞了,假设我们上一次求到的答案为\(ans\),目前\(p_i\)的公倍数是\(M\),那么现在的通解就是\(ans+Mx\)。我们需要求出一个\(x\)满足

\[c_i(ans+Mx)\equiv a_i(mod\ p_i)
\]
\[\Rightarrow Mx+p_iy=a_i-c_i\times ans
\]

然后就可以扩欧合并了。


code

  1. #include<cstdio>
  2. #include<cstring>
  3. #include<algorithm>
  4. #include<cctype>
  5. #include<set>
  6. #define ll __int128
  7. using namespace std;
  8. ll read(){
  9. ll x=0,f=1; char c=getchar();
  10. while(!isdigit(c)) {if(c=='-')f=-f;c=getchar();}
  11. while(isdigit(c)) x=(x<<1)+(x<<3)+c-48,c=getchar();
  12. return x*f;
  13. }
  14. void print(ll x)
  15. {if(x>9)print(x/10);putchar(x%10+48);return;}
  16. const ll N=1e5+10;
  17. multiset<ll> s;
  18. ll n,m,T,a[N],p[N],t[N],c[N];
  19. ll exgcd(ll a,ll b,ll &x,ll &y){
  20. if(!b){x=1;y=0;return a;}
  21. ll d=exgcd(b,a%b,x,y);
  22. ll z=x;x=y;y=z-a/b*y;
  23. return d;
  24. }
  25. void work(){
  26. n=read();m=read();s.clear();
  27. ll mx=0;
  28. for(ll i=1;i<=n;i++)a[i]=read();
  29. for(ll i=1;i<=n;i++)p[i]=read();
  30. for(ll i=1;i<=n;i++)t[i]=read();
  31. for(ll i=1;i<=m;i++){
  32. ll x=read();
  33. s.insert(x);
  34. }
  35. for(ll i=1;i<=n;i++){
  36. multiset<ll>::iterator it;
  37. if(a[i]<*s.begin())it=s.begin();
  38. else it=--s.upper_bound(a[i]);
  39. c[i]=*it;s.erase(it);s.insert(t[i]);
  40. mx=max(mx,(a[i]-1)/c[i]+1);
  41. }
  42. ll M=1,x,y,ans=0;
  43. for(ll i=1;i<=n;i++){
  44. ll d=exgcd(M*c[i],p[i],x,y);
  45. ll w=a[i]-c[i]*ans,v=p[i]/d;
  46. if(w%d){puts("-1");return;}
  47. x=w/d*x%v;ans=ans+x*M;
  48. M=M*v;ans=(ans%M+M)%M;
  49. }
  50. if(ans<mx)ans+=(mx-ans+M-1)/M*M;
  51. print(ans);putchar('\n');
  52. }
  53. signed main()
  54. {
  55. scanf("%lld",&T);
  56. while(T--){work();}
  57. return 0;
  58. }

P4774-[NOI2018]屠龙勇士【EXCRT】的更多相关文章

  1. P4774 [NOI2018]屠龙勇士

    P4774 [NOI2018]屠龙勇士 先平衡树跑出打每条龙的atk t[] 然后每条龙有\(xt \equiv a[i](\text{mod }p[i])\) 就是\(xt+kp[i]=a[i]\) ...

  2. [洛谷P4774] [NOI2018]屠龙勇士

    洛谷题目链接:[NOI2018]屠龙勇士 因为markdown复制过来有点炸格式,所以看题目请戳上面. 题解: 因为杀死一条龙的条件是在攻击\(x\)次,龙恢复\(y\)次血量\((y\in N^{* ...

  3. 洛谷 P4774 [NOI2018] 屠龙勇士

    链接:P4774 前言: 交了18遍最后发现是多组数据没清空/ll 题意: 其实就是个扩中. 分析过程: 首先发现根据题目描述的选择剑的方式,每条龙对应的剑都是固定的,有查询前驱,后继(在该数不存在前 ...

  4. 洛谷P4774 [NOI2018]屠龙勇士 [扩欧,中国剩余定理]

    传送门 思路 首先可以发现打每条龙的攻击值显然是可以提前算出来的,拿multiset模拟一下即可. 一般情况 可以搞出这么一些式子: \[ atk_i\times x=a_i(\text{mod}\ ...

  5. luogu P4774 [NOI2018]屠龙勇士

    传送门 这题真的是送温暖啊qwq,而且最重要的是yyb巨佬在Day2前几天正好学了crt,还写了博客 然而我都没仔细看,结果我就同步赛打铁了QAQ 我们可以先根据题意,使用set维护,求出每次的攻击力 ...

  6. Luogu4774 NOI2018 屠龙勇士 ExCRT

    传送门 原来NOI也会出裸题啊-- 用multiset求出对付每一个BOSS使用的武器威力\(ATK_i\),可以得到\(m\)个式子\(ATK_ix \equiv a_i \mod p_i\) 看起 ...

  7. BZOJ5418:[NOI2018]屠龙勇士(exCRT,exgcd,set)

    Description Input Output Sample Input 23 33 5 74 6 107 3 91 9 10003 23 5 64 8 71 1 11 1 Sample Outpu ...

  8. [NOI2018]屠龙勇士(exCRT)

    首先很明显剑的选择是唯一的,直接用multiset即可. 接下来可以发现每条龙都是一个模线性方程.设攻击第i条龙的剑的攻击力为$s_i$,则$s_ix\equiv a_i\ (mod\ p_i)$. ...

  9. (伪)再扩展中国剩余定理(洛谷P4774 [NOI2018]屠龙勇士)(中国剩余定理,扩展欧几里德,multiset)

    前言 我们熟知的中国剩余定理,在使用条件上其实是很苛刻的,要求模线性方程组\(x\equiv c(\mod m)\)的模数两两互质. 于是就有了扩展中国剩余定理,其实现方法大概是通过扩展欧几里德把两个 ...

  10. BZOJ 5418: [Noi2018]屠龙勇士 EXCRT+multiset

    题解:求解形如 $A[i]ans\equiv b[i](mod$ $p[i])$ 的 $x$ 的最小正整数解. 考虑只有一个等式,那么可以直接化成 $exgcd$ 的形式:$A[i]ans+p[i]y ...

随机推荐

  1. java操作excel 工具类

    java操作excel 可参考https://blog.csdn.net/xunwei0303/article/details/53213130 直接上代码: 一.java生成excel文件: pac ...

  2. UWP使用命名管道与桌面程序通信 (C#)

    关于UWP的历史,其起源是Microsoft在Windows 8中引入的Metro apps.(后来又被称作Modern apps, Windows apps, Universal Windows A ...

  3. LeetCoded第242题题解--java--数组

    数组 数组的优点在于: 构建非常简单 能在 O(1) 的时间里根据数组的下标(index)查询某个元素(连续内存+对象指向数组下标0位置+index能够直接找到元素) 而数组的缺点在于: 构建时必须分 ...

  4. 老鼠走迷宫II

    转自:http://blog.csdn.net/holymaple/article/details/8636234 由于迷宫的设计,老鼠走迷宫的入口至出口路径可能不止一条,如何求出所有的路径呢? 解法 ...

  5. 用vue的抽象组件来做一个防止img标签url为空或url地址出错的验证

    看了网上文章学习了下vue的抽象组件,感觉就跟react的高阶组件一样的使用场景,只是更加面向vue的底层编程 ,网上介绍的抽象组件一般有2种用法,1 用来加防抖和节流 2 用来控制按钮是否允许点击做 ...

  6. C++、Java、Python、Linux、Go、前端、算法,慕课资料分享

    C++.Java.Python.Linux.Go.前端.算法,慕课资料分享 微信公众号:大道同行JAVA 如有问题或建议,请后台留言,我会尽力解决你的问题. 前言 又见面了.废话不多说,最近多了一些在 ...

  7. MySQL双主多从+Keepalived配置

    原文转自:https://www.cnblogs.com/itzgr/p/10233932.html作者:木二 目录 一 基础环境 二 实际部署 2.1 MySQL双主+Keepalived高可用 2 ...

  8. 使用Keepalived实现Nginx的双机主备高可用

    1.概述 前面我们聊过使用 Nginx 为 后端Tomcat 做负载均衡.高可用,但是这时Nginx又成了单点,如果Nginx不幸挂掉,整个网站便无法访问. 此时我们就会用到另一个软件 -- Keep ...

  9. 获取office版本

    /// <summary>         /// office版本         /// </summary>         public enum OfficeVers ...

  10. 机器学习——K-Means算法

    1 基础知识 相似度或距离 假设有 $m$ 个样本,每个样本由 $n$ 个属性的特征向量组成,样本合集 可以用矩阵 $X$ 表示 $X=[x_{ij}]_{mn}=\begin{bmatrix}x_{ ...