cf Inverse the Problem (最小生成树+DFS)
题意:
N个点。N行N列d[i][j]。
d[i][j]:结点i到结点j的距离。
问这N个点是否可能是一棵树。是输出YES,否则输出NO。
思路:
假设这个完全图是由一棵树得来的,则我们对这个完全图求最小生成树,得到原树。(画个图就明白)
故我们对完全图求最小生成树,然后用DFS从这棵树上的每个点出发,判断距离是否和矩阵d相同。
注意:
用vector存与每个点相连树枝的另一端,否则超时。用了vector也耗了1400多秒,限时2s。
代码:
#include <cstdio>
#include <iostream>
#include <string.h>
#include <cstdlib>
#include <algorithm>
#include <queue>
#include <vector>
#include <cmath>
#include <map>
#include <stack>
using namespace std;
int const uu[4] = {1,-1,0,0};
int const vv[4] = {0,0,1,-1};
typedef long long ll;
int const maxn = 50005;
int const inf = 0x3f3f3f3f;
ll const INF = 0x7fffffffffffffffll;
double eps = 1e-10;
double pi = acos(-1.0);
#define rep(i,s,n) for(int i=(s);i<=(n);++i)
#define rep2(i,s,n) for(int i=(s);i>=(n);--i)
#define mem(v,n) memset(v,(n),sizeof(v))
#define lson l, m, rt<<1
#define rson m+1, r, rt<<1|1
struct node{
int x,y,len;
};
int n;
int d[2005][2005], a[2005][2005];
int fa[2005];
node edge[4000005];
vector<int> graph[2005]; bool cmp(node a,node b){
return a.len<b.len;
} int findFa(int x){
if(fa[x]!=x) fa[x]=findFa(fa[x]);
return fa[x];
} bool dfs(int start,int x,int fa,int weight){
if(d[start][x]!=weight){
return false;
}
int L=graph[x].size();
rep(i,0,L-1){
int v=graph[x][i];
if(v==fa) continue;
bool t=dfs(start,v,x,weight+a[x][v]);
if(!t) return false;
}
return true;
} int main(){
scanf("%d",&n);
rep(i,1,n) rep(j,1,n) scanf("%d",&d[i][j]); rep(i,1,n) if(d[i][i]!=0){
printf("NO\n");
return 0;
}
rep(i,1,n-1) rep(j,i+1,n){
if(d[i][j]==0 || (d[i][j]!=d[j][i])){
printf("NO\n");
return 0;
}
} int eNum=0;
mem(a,0); rep(i,1,n-1) rep(j,i+1,n){
edge[++eNum].x=i, edge[eNum].y=j;
edge[eNum].len=d[i][j];
}
sort(edge+1,edge+1+eNum,cmp);
rep(i,1,n) fa[i]=i;
rep(i,1,n) graph[i].clear(); rep(i,1,eNum){
int xx=edge[i].x, yy=edge[i].y;
int fx=findFa(xx), fy=findFa(yy);
if(fx!=fy){
fa[fx]=fy;
a[xx][yy]=a[yy][xx]=edge[i].len;
graph[xx].push_back(yy);
graph[yy].push_back(xx);
}
} int t=findFa(1);
rep(i,2,n) if(findFa(i)!=t){
printf("NO\n");
return 0;
} rep(i,1,n){
bool k=dfs(i,i,-1,0); //从顶点i出发
if(!k){
printf("NO\n");
return 0;
}
}
printf("YES\n");
}
cf Inverse the Problem (最小生成树+DFS)的更多相关文章
- Codeforces Round #270 D Design Tutorial: Inverse the Problem --MST + DFS
题意:给出一个距离矩阵,问是不是一颗正确的带权树. 解法:先按找距离矩阵建一颗最小生成树,因为给出的距离都是最短的点间距离,然后再对每个点跑dfs得出应该的dis[][],再对比dis和原来的mp是否 ...
- Codeforces #270 D. Design Tutorial: Inverse the Problem
http://codeforces.com/contest/472/problem/D D. Design Tutorial: Inverse the Problem time limit per t ...
- cf472D Design Tutorial: Inverse the Problem
D. Design Tutorial: Inverse the Problem time limit per test 2 seconds memory limit per test 256 mega ...
- D. Design Tutorial: Inverse the Problem 解析含快速解法(MST、LCA、思維)
Codeforce 472D Design Tutorial: Inverse the Problem 解析含快速解法(MST.LCA.思維) 今天我們來看看CF472D 題目連結 題目 給你一個\( ...
- CF 291E. Tree-String Problem [dfs kmp trie图优化]
CF291E 题意:一棵树,每条边上有一些字符,求目标串出现了多少次 直接求目标串的fail然后一边dfs一边跑kmp 然后就被特殊数据卡到\(O(n^2)\)了... 因为这样kmp复杂度分析的基础 ...
- 【CF】270D Design Tutorial: Inverse the Problem
题意异常的简单.就是给定一个邻接矩阵,让你判定是否为树.算法1:O(n^3).思路就是找到树边,原理是LCA.判断树边的数目是否为n-1.39-th个数据T了,自己测试2000跑到4s.算法2:O(n ...
- Design Tutorial: Inverse the Problem
Codeforces Round #270 D:http://codeforces.com/contest/472/problem/D 题意:给以一张图,用邻接矩阵表示,现在问你这张图能不能够是一棵树 ...
- HDU 2489 Minimal Ratio Tree 最小生成树+DFS
Minimal Ratio Tree Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Other ...
- CodeForces160D 最小生成树 + dfs
https://cn.vjudge.net/problem/26727/origin 题目大意: 给一个带权的无向图,保证没有自环和重边. 由于最小生成树不唯一,因此你需要确定每一条边是以下三种情况哪 ...
随机推荐
- ecshop不同的文章分类使用不同的模板的方法
ecshop文章模板做的太简单,页面很丑,怎么才能实现不同的文章使用不同的模板呢,方法是有的,就是没有shopex那么方便,但还可以实现,只要能用就行. 1.打开article_cat.php文件,在 ...
- 使用uView UI+UniApp开发微信小程序--微信授权绑定和一键登录系统
在前面随笔<使用uView UI+UniApp开发微信小程序>和<使用uView UI+UniApp开发微信小程序--判断用户是否登录并跳转>介绍了微信小程序的常规登录处理和验 ...
- CF643F-Bears and Juice【组合数学】
正题 题目链接:https://www.luogu.com.cn/problem/CF643F 题目大意 题目有点奇怪就直接放翻译了 有 \(n\) 只熊和若干桶果汁和恰好一桶酒,每一天每只熊会选择一 ...
- 深入浅出WPF-04.x名称空间详解
x名称空间详解 几个需要特别说明的名称空间: x:Class 用来标记XAML和后台代码之间的合并关系.x:Class根节点的类型必须和x:Class值指向的类型保持一致.x:Class的值指向的类型 ...
- 基于深度学习的建筑能耗预测02——安装Tensorflow-gpu
一.检查显卡 ·查看自己的显卡配置是否能支持cuda,以及Tensorflow不同版本要求与CUDA及CUDNN版本对应关系: https://developer.nvidia.com/zh-cn/c ...
- IOS开发之UIScrollView约束布局
概要 在iOS开发学习中,UIScrollView是绕不过去的一个重要控件. 但是相对于Android的ScrollView,iOS的这个滚动控件的用法简直是复杂一万倍... 最主要是目前能找到的大部 ...
- 产生UUID随机字符串工具类
产生UUID随机字符串工具类 UUID是指在一台机器上生成的数字,它保证对在同一时空中的所有机器都是唯一的.通常平台会提供生成的API.按照开放软件基金会(OSF)制定的标准计算,用到了以太网卡地址. ...
- 前端从web服务器或者CDN下载资源
前段时间听到前端同学说前端拿到资源的CDN链接后可以直接从CDN下载资源,不需要经过后端,感觉很神奇,但是一致不明白是怎么实现的,前两天整理了下关于CDN和对象存储的知识,今天搜了下前端直接下载资源的 ...
- TypeScript 枚举指南
枚举是受 TypeScript 支持的数据类型.枚举允许您定义一组命名常量.使用它们可以更轻松地记录意图或创建一组不同的案例.枚举大多数用于面向对象的编程语言(如 Java 和 C#)中,现在也可以 ...
- Serverless 对研发效能的变革和创新
作者 | 杨皓然(不瞋) 对企业而言,Serverless 架构有着巨大的应用潜力.随着云产品的完善,产品的集成和被集成能力的加强,软件交付流程自动化能力的提高,我们相信在 Serverless 架构 ...