【BZOJ 1367】 1367: [Baltic2004]sequence (可并堆-左偏树)
1367: [Baltic2004]sequence
Description
Input
Output
一个整数RSample Input
7
9
4
8
20
14
15
18Sample Output
13HINT
所求的Z序列为6,7,8,13,14,15,18.
R=13Source
【分析】
这题主要是要证明结论。详见hyh的论文。
先说说结论做法:
把序列分成m个区间,每个区间最后到达的值都是u。u为这个区间所有数的中位数。
先做一个小小的转化,题目要求b1<b2<...b3,可以变成b1-1<=b2-2<=b3-3<=...bi-i...【经典的标号的加减,加上一个等号
然后是这样做:
假设我们已经找到前 k 个数 a[1], a[2], … , a[k] (k<n) 的最优解,得到 m 个区间组成的队列,对应的解为 (w[1],w[2],…,w[m]),现 在要加入 a[k+1],并求出前 k+1 个数的最优解。首先我们把 a[k+1] 作为一个新区 间直接加入队尾,令 w[m+1]=a[k+1],然后不断检查队尾两个区间的解 w[m] 和
w[m+1],如果 w[m] >w[m+1],我们需要将最后两个区间合并,并找出新区间的
最优解(也就是序列 a 中,下标在这个新区间内的各项的中位数)。重复这个合
并过程,直至 w[1] ≤ w[2] ≤ … ≤ w[m] 时结束,然后继续处理下一个数。
正确性证明:
若某序列前半部分 a[1], a[2], … , a[n] 的最优解为 (u,u,…,u),后半部分a[n+1], a[n+2], ... , a[m] 的最优解为 (v,v,…,v),那么整个序列的最优解是什么
呢?若 u≤ v,显然整个序列的最优解为 (u,u,…,u,v,v,…,v) 。
否则,设整个序列的最优解为 ( b[1],b[2],…,b[m] ),则显然 b[n] ≤ u(否则我们把前半部分的解( b[1],b[2], …,b[n]) 改为 (u,u,…,u),由题设知整个序列的解不会变坏),同理b[n+1] ≥ v。
接下来,我们将看到下面这个事实:
对于任意一个序列 a[1] ,a[2],…,a[n],如果最优解为 (u,u,…,u),那么在满足u≤ u′≤ b[1] 或 b[n] ≤ u′≤ u 的情况下, (b[1],b[2],…,b[n]) 不会比 ( u′ ,u′ ,…,u′ )
更优。我们用归纳法证明 u≤ u′≤ b[1] 的情况, b[n] ≤ u′≤ u 的情况可以类似证明。
当 n=1 时, u=a[1],命题显然成立。
当n>1 时,假设对于任意长度小于n的序列命题都成立,现在证明对于长度
为n的序列命题也成立。首先把 (b[1], b[2], … b[n]) 改为 (b[1], b[1], … b[1]),这
一改动将不会导致解变坏,因为如果解变坏了,由归纳假设可知a[2],a[3],…,a[n]
的中位数w>u,这样的话,最优解就应该为(u,u,…,u,w,w,…,w),矛盾。然后我们再把(b[1],b[1],…,b[1])改为 ( u′ ,u′ ,…,u′ ),由于 | a[1] - x | + | a[2] - x | + …+ | a[n] - x | 的几何意义为数轴上点x到点a[1], a[2], … a[n] 的距离之和,且u≤ u′≤ b[1],显然点u′ 到各点的距离之和不会比点b[1] 到各点的距离之和大,也
就是说, (b[1],b[1],…,b[n]) 不会比 (v,v,…,v) 更优。(证毕)再回到之前的论述,由于 b[n] ≤ u,作为上述事实的结论,我们可以得知,
将 ( b[1],b[2],…,b[n] ) 改为 (b[n],b[n],…,b[n]),再将 ( b[n+1],b[n+2],…,b[m])
改为 ( b[n+1],b[n+1], …,b[n+1]),并不会使解变坏。也就是说,整个序列的最优
解为 ( b[n],b[n],…,b[n],b[n+1],b[n+1],…,b[n+1])。再考虑一下该解的几何意
义,设整个序列的中位数为 w,则显然令 b[n]=b[n+1]=w 将得到整个序列的最优
解,即最优解为 (w,w,…,w)。(以上证明来自论文ORZ)
代码:
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define Maxn 1000010
#define LL long long int a[Maxn]; int myabs(int x) {return x<?-x:x;} struct node
{
int v,siz,dis,lc,rc;
}t[Maxn]; struct Ltree
{
int cnt;
int merge(int x,int y)
{
if(x==||y==) return x+y;
if(t[x].v<t[y].v) swap(x,y);
t[x].rc=merge(t[x].rc,y);
t[x].siz=t[t[x].lc].siz+t[t[x].rc].siz+;
if(t[t[x].rc].dis>t[t[x].lc].dis) swap(t[x].lc,t[x].rc);
t[x].dis=t[t[x].rc].dis+;
return x;
}
inline int top(int x) {return t[x].v;}
inline int size(int x) {return t[x].siz;}
inline void pop(int &x) {x=merge(t[x].lc,t[x].rc);}
inline int add(int x)
{
t[++cnt].v=x;t[cnt].siz=;
t[cnt].lc=t[cnt].rc=t[cnt].dis=;
return cnt;
}
}heap; int rt[Maxn],tot[Maxn];//区间
int l[Maxn],r[Maxn]; int main()
{
int n;
scanf("%d",&n);
for(int i=;i<=n;i++) {scanf("%d",&a[i]);a[i]-=i;}
int now=;
for(int i=;i<=n;i++)
{
now++;
rt[now]=heap.add(a[i]);
l[now]=r[now]=i;tot[now]=;
while(now>&&heap.top(rt[now-])>heap.top(rt[now]))
{
now--;
rt[now]=heap.merge(rt[now],rt[now+]);
tot[now]+=tot[now+];r[now]=r[now+];
while(heap.size(rt[now])*>tot[now]+)
heap.pop(rt[now]);
}
}
LL ans=;
for(int i=;i<=now;i++)
{
int xx=heap.top(rt[i]);
for(int j=l[i];j<=r[i];j++)
{
ans+=myabs(a[j]-xx);
}
}
printf("%lld\n",ans);
return ;
}
2017-01-16 15:30:21
左偏树:(上面的这份代码的左偏树还少了O(n)构建的部分。)
概念:
优先队列
优先队列(Priority Queue)是一种抽象数据类型(ADT),它是一种容器,里面 有一些元素,这些元素也称为队列中的节点(node)。优先队列的节点至少要包含 一种性质:有序性,也就是说任意两个节点可以比较大小。为了具体起见我们假 设这些节点中都包含一个键值(key),节点的大小通过比较它们的键值而定。优 先队列有三个基本的操作:插入节点(Insert),取得最小节点(Minimum) 和删除 最小节点(Delete-Min)。
可并堆
可并堆(Mergeable Heap)也是一种抽象数据类型,它除了支持优先队列的三 个基本操作(Insert, Minimum, Delete-Min), 还支持一个额外的操作——合并操作。
左偏树
左偏树(Leftist Tree)是一种可并堆的实现。左偏树是一棵二叉树,它的节点 除了和二叉树的节点一样具有左右子树指针( left, right ) 外,还有两个属性:键值 和距离(dist)。
1、外节点:节点 i 称为外节点(external node),当且仅当节点 i 的左子树或右子树为空 ( left(i) = NULL 或 right(i) = NULL );
2、距离:点 i 的距离( dist( i ) ) 是节点 i 到它的后代 中,最近的外节点所经过的边数。特别的,如果节点 i 本身是外节点,则它的距 离为 0;而空节点的距离规定为-1 (dist(NULL) = -1)。在本文中,有时也提到一 棵左偏树的距离,这指的是该树根节点的距离。
左偏树的性质:
[性质 1] 节点的键值小于或等于它的左右子节点的键值。
[性质 2] 节点的左子节点的距离不小于右子节点的距离。
[性质 3] 节点的距离等于它的右子节点的距离加 1。
[引理 1] 若左偏树的距离为一定值, 则节点数最少的左偏树是完全二叉树。
[定理 1] 若一棵左偏树的距离为k,则这棵左偏树至少有 2k+1-1 个节点。
[性质 4] 一棵 N 个节点的左偏树距离最多为 [log(N+1)]-1。
性质4决定了左偏树的时间复杂度是较低的。
左偏树的合并:
int merge(int x,int y)
{
if(x==0||y==0) return x+y;
if(t[x].v<t[y].v) swap(x,y);
t[x].rc=merge(t[x].rc,y);
t[x].siz=t[t[x].lc].siz+t[t[x].rc].siz+1;
if(t[t[x].rc].dis>t[t[x].lc].dis) swap(t[x].lc,t[x].rc);
t[x].dis=t[t[x].rc].dis+1;
return x;
}
删除:
inline void pop(int &x) {x=merge(t[x].lc,t[x].rc);}
添加一个节点形成一颗新的左偏树:
inline int add(int x)
{
t[++cnt].v=x;t[cnt].siz=1;
t[cnt].lc=t[cnt].rc=t[cnt].dis=0;
return cnt;
}
各种堆的比较:

左偏树真是真短真美丽233
2017-01-16 16:08:10
【BZOJ 1367】 1367: [Baltic2004]sequence (可并堆-左偏树)的更多相关文章
- BZOJ 2809: [Apio2012]dispatching(可并堆 左偏树板题)
这道题只要读懂题目一切好说. 给出nnn个点的一棵树,每一个点有一个费用vvv和一个领导力aaa,给出费用上限mmm.求下面这个式子的最大值ax∗∣S∣ ( S⊂x的子树, ∑iv[i]≤m )\la ...
- 【BZOJ 2333 】[SCOI2011]棘手的操作(离线+线段树|可并堆-左偏树)
2333: [SCOI2011]棘手的操作 Description 有N个节点,标号从1到N,这N个节点一开始相互不连通.第i个节点的初始权值为a[i],接下来有如下一些操作: U x y: 加一条边 ...
- [BOI2004]Sequence 数字序列(左偏树)
PS:参考了黄源河的论文<左偏树的特点及其应用> 题目描述:给定一个整数序列\(a_1, a_2, - , a_n\),求一个递增序列\(b_1 < b_2 < - < ...
- USACO Running Away From the Barn /// 可并堆 左偏树维护大顶堆
题目大意: 给出以1号点为根的一棵有根树,问每个点的子树中与它距离小于等于m的点有多少个 左偏树 https://blog.csdn.net/pengwill97/article/details/82 ...
- BZOJ1367 [Baltic2004]sequence 堆 左偏树
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1367 题意概括 Description Input Output 一个整数R 题解 http:// ...
- BZOJ 2333: [SCOI2011]棘手的操作 可并堆 左偏树 set
https://www.lydsy.com/JudgeOnline/problem.php?id=2333 需要两个结构分别维护每个连通块的最大值和所有连通块最大值中的最大值,可以用两个可并堆实现,也 ...
- BZOJ 5059: 前鬼后鬼的守护 可并堆 左偏树 数学
https://www.lydsy.com/JudgeOnline/problem.php?id=5059 题意:将原序列{ai}改为一个递增序列{ai1}并且使得abs(ai-ai1)的和最小. 如 ...
- 【BZOJ 1455】 1455: 罗马游戏 (可并堆-左偏树+并查集)
1455: 罗马游戏 Description 罗马皇帝很喜欢玩杀人游戏. 他的军队里面有n个人,每个人都是一个独立的团.最近举行了一次平面几何测试,每个人都得到了一个分数. 皇帝很喜欢平面几何,他对那 ...
- 数据结构,可并堆(左偏树):COGS [APIO2012] 派遣
796. [APIO2012] 派遣 在一个忍者的帮派里,一些忍者们被选中派遣给顾客,然后依据自己的工作获取报偿. 在这个帮派里,有一名忍者被称之为Master.除了Master以外,每名忍者都有且 ...
随机推荐
- Core Data & MagicalRecord
iOS 本地数据持久化存储: 1.plist 2.归档 3.NSUserDefaults 4.NSFileManager 5.数据库 一.CoreData概述 CoreData是苹果自带的管理数据库的 ...
- sql日期
当我们处理日期时,最难的任务恐怕是确保所插入的日期的格式,与数据库中日期列的格式相匹配. 只要您的数据包含的只是日期部分,运行查询就不会出问题.但是,如果涉及时间部分,情况就有点复杂了. 在讨论日期查 ...
- 添加以及删除className
<!DOCTYPE HTML> <html> <head> <meta http-equiv="Content-Type" content ...
- C#实现http断点下载
我们寄希望于万能的解决方案,但是现实的情况总是很糟糕.在软件编程的世界中,技术分散的情况尤为严重,且不说各种语言拥有的优势不能融合,单就一门语言而言,就拥有众多的技术和相关技术需要学习.网络编程就是这 ...
- STL笔记之【map之添加元素】
//---------------------------------------------------------// 向map中插入元素的方法比较//---------------------- ...
- C# 经典入门12章-使用泛型类型-2
- photoshop基础教程视频-贺叶铭-传智播客-笔记
界面构成 1.菜单栏 2.工具箱 3.工具属性栏 4.悬浮面板 5.画布 ctrl+n 新建对话框 (新建画布) 画布200*200大小,是指以毫米为单位,当不说单位,默认是毫米. 打开对话框:ctr ...
- Chapter 1 First Sight——7
Eventually we made it to Charlie's. 最终我们到了查理斯的家. He still lived in the small,two-bedroom house that ...
- 多文件上传插件Stream,是Uploadify的Flash版和Html5版的结合,带进度条,并支持html5断点续传(附件上传),拖拽等功能
是根据某网的文件上传插件加工而来,支持不同平台(Windows, Linux, Mac, Android, iOS)下,主流浏览器(IE7+, Chrome, Firefox, Safari, 其他) ...
- JavaFX 2.0+ WebView /WebEngine render web page to an image
http://stackoverflow.com/questions/7796558/javafx-2-0-webview-webengine-render-web-page-to-an-image ...

