原文:算法起步之Bellman-Ford算法

从这篇开始我们开始介绍单源最短路径算法,他是图算法之一,我们前面说的贪心,图的遍历,动态规划都是他的基础,单源最短路径其实说的就是图中节点到节点的最短路径。就像我们使用百度地图从哪到哪一样,找出最近的距离,而单源最短路径问题不只是两点之间的路径,他有很多的变形,像单目的地最短路径问题,单节点对最短路径问题,所有节点对最短路径问题,最短路径的最优子结构问题。

在介绍这类算法之前我们先规定节点的基本属性,我们规定节点都有一个key值,key值记录的是开始节点到本节点的最小距离,每个节点也都有一个p指针指向他的前驱节点。这里我们规定一个操作叫做松弛操作,我们的算法也是最终基于这个操作的。松弛操作就是去更新key的值。

节点B的key值为8,表示从开始节点到B节点之前的最短估计距离是8,而节点A的key值3,是说从开始节点到A节点最短估计是3,当我们发现这个边时,从A到B的距离比较近,所以我们去更新B的key值,同时把B的前驱节点设置成A。这个过程就是松弛操作。

我们说的Bellman-Ford算法是最简单的算法,就是从开始节点开始循环每一条边,对他进行松弛操作。最后得到的路径就是最短路径。过程如图:

public class BellmanFord {

	private int[] rank;
private int max=1000;
public boolean bellmanford(int[][]map,int start,int end){
init(map.length, start);
for (int i = 0; i < map.length; i++) {
for (int j = 0; j < map.length; j++) {
if (map[i][j]!=0) {
relex(i,j,map[i][j]);
}
}
}
for (int i = 0; i < map.length; i++) {
for (int j = 0; j < map.length; j++) {
if (rank[j]>rank[i]+map[i][j]) {
return false;
}
} }
return true;
}
public void init(int max,int start){
rank=new int[max];
for (int i = 0; i < rank.length; i++) {
rank[i]=max;
}
rank[start]=0; }
public void relex(int s,int e,int length){
if(rank[e]>rank[s]+length){
rank[e]=rank[s]+length;
} }
}

          友情提示:转载请注明出处【作者idlear    博客http://blog.csdn.net/idlear/article/details/19650965】

算法起步之Bellman-Ford算法的更多相关文章

  1. Bellman—Ford算法思想

    ---恢复内容开始--- Bellman—Ford算法能在更普遍的情况下(存在负权边)解决单源点最短路径问题.对于给定的带权(有向或无向)图G=(V,E),其源点为s,加权函数w是边集E的映射.对图G ...

  2. Bellman - Ford 算法解决最短路径问题

    Bellman - Ford 算法: 一:基本算法 对于单源最短路径问题,上一篇文章中介绍了 Dijkstra 算法,但是由于 Dijkstra 算法局限于解决非负权的最短路径问题,对于带负权的图就力 ...

  3. 算法起步之A星算法

    原文:算法起步之A星算法 用途: 寻找最短路径,优于bfs跟dfs 描述: 基本描述是,在深度优先搜索的基础上,增加了一个启发式算法,在选择节点的过程中,不是盲目选择,而是有目的的选的,F=G+H,f ...

  4. Dijkstra算法与Bellman - Ford算法示例(源自网上大牛的博客)【图论】

    题意:题目大意:有N个点,给出从a点到b点的距离,当然a和b是互相可以抵达的,问从1到n的最短距离 poj2387 Description Bessie is out in the field and ...

  5. poj1860 bellman—ford队列优化 Currency Exchange

    Currency Exchange Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 22123   Accepted: 799 ...

  6. uva 558 - Wormholes(Bellman Ford判断负环)

    题目链接:558 - Wormholes 题目大意:给出n和m,表示有n个点,然后给出m条边,然后判断给出的有向图中是否存在负环. 解题思路:利用Bellman Ford算法,若进行第n次松弛时,还能 ...

  7. 算法起步之动态规划LCS

    原文:算法起步之动态规划LCS 前一篇文章我们了解了什么是动态规划问题,这里我们再来看动态规划另一个经典问题,最长公共子序列问题(LCS),什么是子序列,我们定义:一个给定序列将其中的0个或者多个元素 ...

  8. 算法起步之Kruskal算法

    原文:算法起步之Kruskal算法 说完并查集我们接着再来看这个算法,趁热打铁嘛.什么是最小生成树呢,很形象的一个形容就是铺自来水管道,一个村庄有很多的农舍,其实这个村庄我们可以看成一个图,而农舍就是 ...

  9. 算法起步之Prim算法

    原文:算法起步之Prim算法 prim算法是另一种最小生成树算法.他的安全边选择策略跟kruskal略微不同,这点我们可以通过一张图先来了解一下. prim算法的安全边是从与当前生成树相连接的边中选择 ...

随机推荐

  1. jQuery 查询 xml

    加载xml:(注:这个方法在Chrome是用不了的,Chrome是禁止访问本地的xml文件,在ie11里面用不了,ie11的xmlDom文档没有load方法) function loadXML(fil ...

  2. 基于visual Studio2013解决面试题之0808寻找中间数

     题目

  3. Qt显示调用vs中的dll

    网上看到很多文章写调用vc的dll,但我尝试了总是出问题,下面结合参考别人的文章,实现了Qt显示调用vs中c接口的dll. 具体直接上代码: vs中的代码: TMax.h: #ifdef TMAX # ...

  4. Inhouse interview(websense)

    1.Tell me about yourself? My name is xxx,i 'm from xxx. now , I am a postgratuation and my major sub ...

  5. 基于visual Studio2013解决C语言竞赛题之1057打印加数

       题目 解决代码及点评 /* 功能: 已知N是正整数, 它可拆写成三个正整数N1.N2和N3之和的形式N=N1+N2+N3. 请编程序打印出满足上式的全部组合,并当N1.N2和N3中至 ...

  6. swift-var/let定义变量和常量

    // Playground - noun: a place where people can play import UIKit //--------------------------------- ...

  7. 快速排序原理、复杂度分析及C语言实现

    本文作者华科小涛:@http://www.cnblogs.com/hust-ghtao/,参考<算法导论>,代码借用<剑指offer> 快速排序是一种最坏情况时间复杂度为的排序 ...

  8. HDU 3584 三维树状数组

    三维树状数组模版.优化不动了. #include <set> #include <map> #include <stack> #include <cmath& ...

  9. uva 657

    很简单的题,就是题意不懂……! 就是判断每个'*'区域内‘X’区域块的个数 WA了好多次,就是太差了: 1.结果排序输出 2.因为是骰子所以不再1-6范围内的数字要舍弃 3.格式要求要空一行…… 4. ...

  10. 解决sqlserver2008 r2 登陆时报错:provider 命名管道提供程序, error40 错误2

    错误截图: 这种错误是因为无法启动sqlserver服务,进入命令行,输入  services.msc  进入服务管理,找到sqlserver服务如下图. 在这里启动该服务会报错如下图: 此服务无法启 ...