题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2870

分析:分别转换成'a','b','c'三种来求,其实就跟hdu1505一样了。。。

#include <cstdio>
#include <cstring>
#include <cmath>
#include <iostream>
#include <algorithm>
#include <queue>
#include <cstdlib>
#include <vector>
#include <set>
#include <map>
#define LL long long
#define inf 1<<30
using namespace std;
char s[][],str[][];
int sum[][],l[],r[];
int n,m;
int solve(char ch,char a,char b,char c)
{
int t;
memset(sum,,sizeof(sum));
for(int i=; i<=n; i++)
for(int j=; j<=m; j++)
{
if(s[i][j]==a||s[i][j]==b||s[i][j]==c)str[i][j]=ch;
else str[i][j]=s[i][j];
}
for(int i=; i<=n; i++)
for(int j=; j<=m; j++)
{ if(str[i][j]==ch)sum[i][j]=sum[i-][j]+;
else sum[i][j]=;
}
int ans=-;
for(int i=; i<=n; i++)
{
l[]=;
r[m]=m;
for(int j=; j<=m; j++)
{
t=j;
while(t>&&sum[i][j]<=sum[i][t-])t=l[t-];
l[j]=t;
}
for(int j=m-; j>=; j--)
{
t=j;
while(t<m&&sum[i][j]<=sum[i][t+])t=r[t+];
r[j]=t;
}
for(int j=; j<=m; j++)
ans=max(ans,(r[j]-l[j]+)*sum[i][j]);
}
return ans;
}
int main()
{
while(scanf("%d%d",&n,&m)>)
{
for(int i=;i<=n;i++)scanf("%s",s[i]+);
int ans=-;
ans=max(ans,solve('a','w','y','z'));
ans=max(ans,solve('b','w','x','z'));
ans=max(ans,solve('c','x','y','z'));
printf("%d\n",ans);
}
}

hdu2870(dp求最大子矩阵)的更多相关文章

  1. hdu 2870(dp求最大子矩阵)

    题意:让你求的是由同一字母组成的最大子矩阵,w可以变成a或者b,x可以变成b或者c,y可以变成a或者c,z可以变成a或者b或者c. 分析:这是hdu 1506.hdu 1505的加强版,具体的分析看我 ...

  2. hdu 1505(dp求最大子矩阵)

    题意:就是让你求出全由F组成的最大子矩阵. 分析:这是hdu 1506的加强版,只不过这道题变成了2维的,那我们就一行一行的来.具体的分析见1506的博客:http://www.cnblogs.com ...

  3. hdu 1506(dp求最大子矩阵)

    题意:容易理解... 分析:对于每个单位矩阵,我们先求出连续比它高的最左边的下标假设为l,然后求出比它高的最右边的下标假设为r,然后矩阵的面积就是(r-l+1)*1:我们从左到 右扫一遍,求出每个点的 ...

  4. hdu1506(dp求最大子矩阵)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1506 分析: 对于每个单位矩阵,我们先求出连续比它高的最左边的下标假设为l,然后求出比它高的最右边的下 ...

  5. hdu1505(dp求最大子矩阵)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1505 分析: 这题是HDU 1506 的加强版,定义一个二维数组,d[i][j]表示第i行j列元素在前 ...

  6. hdu 1506 Largest Rectangle in a Histogram ((dp求最大子矩阵))

    # include <stdio.h> # include <algorithm> # include <iostream> # include <math. ...

  7. BZOJ 1057: [ZJOI2007]棋盘制作 悬线法求最大子矩阵+dp

    1057: [ZJOI2007]棋盘制作 Description 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8*8大小的黑 ...

  8. poj 1050 To the Max_dp求最大子矩阵和

    题意:求最大子矩阵和 利用dp[i]每次向下更新,构成竖起的单条矩阵,再按不小于零就加起来来更新,构成更大的矩阵 #include <iostream> #include<cstdi ...

  9. POJ1050To the Max(求最大子矩阵)

    题目链接 题意:给出N*N的矩阵,求一个子矩阵使得子矩阵中元素和最大 分析: 必备知识:求一组数的最大连续和 int a[N]; ,maxn = -INF; ; i <= n; i++) { i ...

随机推荐

  1. android的单元测试

    1.新建android Test project 2. 选择针对测试的项目 3.新建类继承AndroidTestCase即可: package com.howlaa.sms.test; import ...

  2. delphi中左右翻转窗体(修改EXStyle)

    unit Unit1; interface uses  Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Form ...

  3. Spark on Mesos: 搭建Mesos的一些问题

    资源管理系统 Spark可以搭建在Mesos上或YARN上,两个都是资源管理系统.了解资源管理系统的话,可以先参看以下几篇文章: 浅谈Borg/YARN/Mesos/Torca/Corona一类系统 ...

  4. HTML5 Canvas中9宫格的坑

    近期小鸟情人游戏上了手机qq空间,一个3岁的游戏来了她的第二春.为了能有更好的表现,我们对其进行了一次改版. 改版当中一项就是对原来的弹出框样式进行改进.将大块木板材质改成纯色(边框为圆角金属材质)样 ...

  5. Python 学习入门(21)—— 线程

    本文介绍了Python对于线程的支持,包括“学会”多线程编程需要掌握的基础以及Python两个线程标准库的完整介绍及使用示例. 1. 线程基础 1.1. 线程状态 线程有5种状态,状态转换的过程如下图 ...

  6. .Net 4.0特性 Tuple元组

    Tuple 字面意思:元组.是.net4.0增加的新特性,是干什么的呢?总结一句,个人觉得这个东西 就是用来在有返回很多种类型的值时可以用到.它提供了8种类型的Tuple,直接看最复杂的那种(其实不是 ...

  7. Spark大型项目实战:电商用户行为分析大数据平台

    本项目主要讲解了一套应用于互联网电商企业中,使用Java.Spark等技术开发的大数据统计分析平台,对电商网站的各种用户行为(访问行为.页面跳转行为.购物行为.广告点击行为等)进行复杂的分析.用统计分 ...

  8. Delphi颜色的表示(一共5种表示法)

    //全以红色举例: //1. RGB 模式:Self.Color := $0000ff; //不过和HTML.PhotoShop.FireWorks中的 #ff0000 是完全反的,应该叫 BGR. ...

  9. 同一个页面里的JS怎样获取jsp从别的页面获取的参数

    <html><from name="from1"><input=hidden name="myhidden" value=< ...

  10. 编程之美2013 初赛一 A - 竞价 学习大牛的思路

    这题我做了N久也做不出....赛后看了大牛AC的思路.... Program: #include<iostream> #include<cmath> #include<s ...