BZOJ 3122 SDOI2013 随机数发生器 数论 EXBSGS
标题效果:给定一列数X(i+1)=(a*Xi+b)%p 最低要求i>0。所以Xi=t
0.0 这个问题可以1A那很棒
首先讨论特殊情况
如果X1=t ans=1
如果a=0 ans=b==t?
2:-1
若a=1 X1+b*(ans-1)==t (%p) 扩展欧几里得
令
temp=b/(a-1)
则有
(X(i+1)+temp)=a*(Xi+temp)
Xans=(X1+temp)*a^(ans-1)-temp
当中Xans%p=t
则有
(X1+temp)*a^(ans-1)-temp == t (%p)
两側同乘a-1得
(a*X1-X1+b)*a^(ans-1) == (a-1)*t+b (%p)
令
Y=a*X1-X1+b
Z=a*t-t+b
Y*a^(ans-1) == Z(%p)
将Y和p约分
若Z%gcd(Y,p)!=0 return -1
令
A=a
B=Z*Y^-1
C=p
x=ans-1
A^x==B(%C)
然后就是EXBSGS的模板了0.0 这个模板我再也不想打第二遍了0.0
代码没法看了,诸位理解算法思想就好了0.0
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define M 1001001
using namespace std;
typedef long long ll;
typedef pair<ll,ll> abcd;
ll X,Y,Z,a,b,c,p,t,A,B,C,D;
ll hash_table[M],val[M],tim[M],tot;
int Hash(ll x)
{
int pos=x%M;
while(1)
{
if(tim[pos]!=tot)
tim[pos]=tot,hash_table[pos]=-1,val[pos]=0x3f3f3f3f;
if(hash_table[pos]==-1||hash_table[pos]==x)
return hash_table[pos]=x,pos;
else
++pos,pos%=M;
}
}
int Get_Hash(ll x)
{
int pos=x%M;
while(1)
{
if(tim[pos]!=tot)
tim[pos]=tot,hash_table[pos]=-1;
if(hash_table[pos]==-1)
return -1;
if(hash_table[pos]==x)
return pos;
else
++pos,pos%=M;
}
}
ll GCD(ll x,ll y)
{
return y?GCD(y,x%y):x;
}
abcd EXGCD(ll x,ll y)
{
if(!y) return abcd(1,0);
abcd temp=EXGCD(y,x%y);
return abcd(temp.second,temp.first-x/y*temp.second);
}
ll Inverse(ll x)
{
ll temp=EXGCD(x,C).first;
return (temp%C+C)%C;
}
ll Extended_Big_Step_Giant_Step()
{
ll i,m,cnt=0,temp,base=1;
int pos;
if(B>=C)
return -1;
for(i=0,temp=1%C;i<=50;i++,temp*=A,temp%=C)
if(temp==B)
return i;
D=1;
while(temp=GCD(A,C),temp!=1)
{
if(B%temp)
return -1;
++cnt;
B/=temp;
C/=temp;
D*=A/temp;
D%=C;
}
B*=Inverse(D);B%=C;
m=(ll)ceil(sqrt(C)+1e-5);
++tot;
for(i=0,temp=1%C;i<m;i++,temp*=A,temp%=C)
pos=Hash(temp),val[pos]=min(val[pos],i);
for(i=1,base=1%C;i<=m;i++,base*=A,base%=C);
for(i=0,D=1%C;i<m;i++,D*=base,D%=C)
{
temp=EXGCD(D,C).first*B;
temp=(temp%C+C)%C;
pos=Get_Hash(temp);
if(~pos)
return i*m+val[pos]+cnt;
}
return -1;
}
ll Deal()
{
ll temp;
cin>>p>>a>>b>>X>>t;
if(X==t) return 1;
if(!a) return b==t? 2:-1;
if(a==1)
{
t+=p-X;t%=p;
//b*(ans-1)==t (%p)
temp=GCD(b,p);
if(t%temp) return -1;
b/=temp;t/=temp;p/=temp;
temp=(EXGCD(b,p).first*t%p+p)%p;
return temp+1;
}
Y=(a*X-X+b)%p;
Z=(a*t-t+b)%p;
temp=GCD(Y,p);
if(Z%temp) return -1;
Y/=temp;Z/=temp;p/=temp;
C=p;
B=Z*Inverse(Y)%p;
A=a;
temp=Extended_Big_Step_Giant_Step();
if(temp==-1)
return -1;
return temp+1;
}
int main()
{
int T;
for(cin>>T;T;T--)
cout<<Deal()<<endl;
}
版权声明:本文博客原创文章,博客,未经同意,不得转载。
BZOJ 3122 SDOI2013 随机数发生器 数论 EXBSGS的更多相关文章
- bzoj 3122: [Sdoi2013]随机数生成器
#include<cstdio> #include<iostream> #include<map> #include<cmath> #define ll ...
- bzoj 3122 [Sdoi2013]随机数生成器(逆元,BSGS)
Description Input 输入含有多组数据,第一行一个正整数T,表示这个测试点内的数据组数. 接下来T行,每行有五个整数p,a,b,X1,t,表示一组数据.保证X1和t都是合法的页码. ...
- bzoj 3122 : [Sdoi2013]随机数生成器 BSGS
BSGS算法 转自:http://blog.csdn.net/clove_unique 问题 给定a,b,p,求最小的非负整数x,满足$a^x≡b(mod \ p)$ 题解 这就是经典的BSGS算法, ...
- bzoj 3122: [Sdoi2013]随机数生成器【BSGS】
题目要求的是: \[ ...a(a(a(ax+b)+b)+b)+b...=a^nx+a^{n-1}b+a^{n-2}b+...+b\equiv t(mod\ p) \] 后面这一大坨看着不舒服,所以考 ...
- Bzoj 3122 [Sdoi2013]随机数生成器(BSGS+exgcd)
Input 输入含有多组数据,第一行一个正整数T,表示这个测试点内的数据组数. 接下来T行,每行有五个整数p,a,b,X1,t,表示一组数据.保证X1和t都是合法的页码. 注意:P一定为质数 Outp ...
- 【bzoj3122】: [Sdoi2013]随机数生成器 数论-BSGS
[bzoj3122]: [Sdoi2013]随机数生成器 当a>=2 化简得 然后 BSGS 求解 其他的特判 : 当 x=t n=1 当 a=1 当 a=0 判断b==t /* http: ...
- 【BZOJ 3122】 [Sdoi2013]随机数生成器 (BSGS)
3122: [Sdoi2013]随机数生成器 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 1442 Solved: 552 Description ...
- 浅谈C#随机数发生器
我们在做能自动生成试卷的考试系统时,常常需要随机生成一组不重复的题目,在.net Framework中提供了一个专门用来产生随机数的类System.Random. 对于随机数,大家都知道,计算机不 可 ...
- [nRF51822] 16、nRF51822的随机数生成器,及随机数生成器的一些知识(可以帮您补补随机数发生器的知识)
1.前言 随机数生成器在通信.加密.图像传输等领域应用广泛,且一般起到关键性作用.我在最近设计的一个近场射频通信协议的碰撞避退算法的过程中,便对此有深深体会. 2.伪随机数发生器 随机数发生器一般包括 ...
随机推荐
- WPF命中测试示例(二)——几何区域命中测试
原文:WPF命中测试示例(二)--几何区域命中测试 接续上次的命中测试,这次来做几何区域测试示例. 示例 首先新建一个WPF项目,在主界面中拖入一个按钮控件,并修改代码中的以下高亮位置: 当前设计视图 ...
- Java集合类汇总记录-- apache.commons4(TreeList)
通常.Tree是Tree,List是List,两者不太可能混在一起.但apache-commons库却用tree实现了实现了List的接口,也就是TreeList类.与标准的LinkedList相比. ...
- ReactNavtive框架教程(2)
, alignItems: 'center' } }); 标准的 CSS 属性.尽管用CSS比在IB设置UI样式的可视化要差.但总比在viewDidLoad()方法中用代码写要好一些. 然后增加下面代 ...
- oracle分区表运行计划
分区表有非常多优点,以大化小,一小化了,加上并行的使用,在loap中能往往能提高几十倍甚至几百倍的效果. 当然表设计得不好也会适得其反.效果比普通表跟糟糕. 为了更好的使用分区表,这里看一下分区表的运 ...
- [转]C#自定义开关按钮控件--附带第一个私活项目截图
原文地址:http://www.cnblogs.com/feiyangqingyun/archive/2013/06/15/3137597.html 进入智能手机时代以来,各种各样的APP大行其道,手 ...
- 使用C#和.NET 4编写的并行应用程序“多核并发编程的规则”
“多核并发编程的规则” 规则的描述如下 1. 并发编程的思想—这条规则就是要谨记并发编程思想进行设计,就像前边章节所提交的. 2. 面向抽象编程-你可以利用.NET4中的TPL提供 ...
- android studio学习
http://blog.csdn.net/ryantang03/article/details/8948037 http://www.it165.net/pro/html/201109/676.htm ...
- 【Java基础】异常的简单分类与处理
Java中所有的异常都继承自Throwable类,Throwable类的已知子类有Error和Exception. Error是指系统出现的错误,这种错误出现的时候,我们的程序无能为力,所以不需要进行 ...
- 牟大哥:《App自我促销》连载2
直立人迁移走
[谋哥每天一干货,第六十九篇] 前篇说到声音在远古时代.是一个奇妙的东西,它可以非常快地把信息传播到其它地方,突破了短距离. 然而能人的后代直立人学会了直立行走,他们開始走出非洲,到达遥远的中东.中国 ...
- Linux下/proc目录简介(转)
1. /proc目录Linux 内核提供了一种通过 /proc 文件系统,在运行时访问内核内部数据结构.改变内核设置的机制.proc文件系统是一个伪文件系统,它只存在内存当中,而不占用外存空间.它以文 ...