【长 PI】
/*
长 PI 说明:
圆周率后的小数位数是无止境的,如何使用电脑来计算这无止境的小数是一些数学家与程式设计师所感兴趣的,在这边介绍一个公式配合 大
数运算,可以计算指定位数的圆周率。 解法 :
首先介绍J.Marchin的圆周率公式:
PI = [16/5 - 16 / (3*5^3 ) + 16 / (5*5^5) - 16 / (7*5^7) + ] ......] -
[4/239 - 4/(3*239^3) + 4/(5*239^5) - 4/(7*239^7) + ......]
可以将这个公式整理为:
PI = [16/5 - 4/239] - [16/(5^3)- 4/(239^3)]/3+ [16/(5^5)- 4/(239^5)]/5 + ......
也就是说第n项,若为奇数则为正数,为偶数则为负数,而项数表示方式为:
[16/5^(2*n-1)- 4/239^(2*n-1)] / (2*n-1)
如果我们要计算圆周率至10的负L次方,由于[16/5^(2*n-1) - 4/239^(2*n-1)]中16/5^(2*n-1) 比4/239^(2*n-1) 来的大,具有决定性,所以表示
至少必须计算至第n项:
[16/5^(2*n-1)] / (2*n-1) = 10^(-L)
将上面的等式取log并经过化简,我们可以求得:
n = L / (2log5) = L / 1.39794
所以若要求精确度至小数后L位数,则只要求至公式的第n项,其中n等于:
n = [L/1.39794] + 1
在上式中[]为高斯符号,也就是取至整数(不大于L/1.39794 的整数);为了计简方便,可以在 程式中使用下面这个公式来计简第n项:
[W(n) -1/5^2 - V(n) - 1 / (239^2)] / (2*n-1)
这个公式的演算法配合大数运算函式的演算法为:
div(w, , 25, w);
div(v, , 239, v);
div(v, , 239, v);
sub(w, , v, q);
div(q, , 2*k-1, q)
至于大数运算的演算法,请参考之前的文章,必须注意的是在输出时,由于是输出阵列中的整数值,如果阵列中整数位数不满四位,则必须补
上0,在C语言中只要 使用格式指定字%04d ,使得不足位数部份自动补上0再输出,至于Java的部份,使用 NumberFormat来作格式化 */ #include <stdio.h> #define L 1000 //L为位数,N是array的长度
#define N L/4 + 1 void add(int* , int* , int* );
void sub(int* , int* , int* );
void div(int* , int , int* ); int main(void)
{
int s[N+] = {};
int w[N+] = {};
int v[N+] = {};
int q[N+] = {};
int n = (int)(L/1.39793 + );
int k; w[] = *;
v[] = *; for(k = ; k <= n; k++)
{
div(w, , w);
div(v, , v);
div(v, , v);
sub(w, v, q);
div(q, * k - , q); if(k % )
{
add(s, q, s);
}
else
{
sub(s, q, s);
}
}
printf("%d", s[]);
for(k = ; k < N; k++)
{
printf("%04d", s[k]);
}
printf("\n"); return ;
} void add(int* a, int* b, int* c)
{
int i, carry = ; for(i = N + ; i >= ; i--)
{
c[i] = a[i] + b[i] + carry;
if(c[i] < )
{
carry = ;
}
else
{
c[i] = c[i] - ;
carry = ;
}
}
} void sub(int* a, int* b, int*c)
{
int i, borrow = ;
for(i = N + ; i >= ; i--)
{
c[i] = a[i] - b[i] -borrow;
if(c[i] >= )
{
borrow = ;
}
else
{
c[i] = c[i] + ;
borrow = ;
}
}
} void div(int* a, int b, int* c)
{
int i, tmp, remain = ;
for(i = ; i <= N + ; i++)
{
tmp = a[i] + remain;
c[i] = tmp / b;
remain = (tmp % b) * ;
}
}
结果如下:
【长 PI】的更多相关文章
- node操作MongoDB数据库之插入
在上一篇中我们介绍了MongoDB的安装与配置,接下来的我们来看看在node中怎样操作MongoDB数据库. 在操作数据库之前,首先应该像关系型数据库一样建个数据库把... 启动数据库 利用命令提示符 ...
- c经典算法
1. 河内之塔 说明 河内之塔(Towers of Hanoi)是法国人M.Claus(Lucas)于1883年从泰国带至法国的,河内为越战时 北越的首都,即现在的胡志明市:1883年法国数学家 Ed ...
- Java经典算法大全
1.河内之塔.. 2.Algorithm Gossip: 费式数列. 3. 巴斯卡三角形 4.Algorithm Gossip: 三色棋 5.Algorithm Gossip: 老鼠走迷官(一) 6. ...
- redis 间断性耗时长问题解决
我发现开发项目用的redis 隔一两分钟就出现 耗时问题,长达五秒.一开始以为是 redis 服务器不稳定,但运维测试发现redis稳定的,在高并发下最大耗时也就只有100毫秒左右,怎么也不可能达到5 ...
- POJ 3261 Milk Patterns 后缀数组求 一个串种 最长可重复子串重复至少k次
Milk Patterns Description Farmer John has noticed that the quality of milk given by his cows varie ...
- POJ 3294 Life Forms 后缀数组+二分 求至少k个字符串中包含的最长子串
Life Forms Description You may have wondered why most extraterrestrial life forms resemble humans, ...
- poj2774 后缀数组2个字符串的最长公共子串
Long Long Message Time Limit: 4000MS Memory Limit: 131072K Total Submissions: 26601 Accepted: 10 ...
- hdu 5100 n*n棋盘放k*1长方条最多覆盖面积
http://acm.hdu.edu.cn/showproblem.php?pid=5100 给一个n*n的棋盘,问用k*1的长方条最多能覆盖多大的面积(k个单位都必须完全覆盖上去) 首先,若n< ...
- hdu 5773 The All-purpose Zero 最长上升子序列+树状数组
题目链接:hdu 5773 The All-purpose Zero 官方题解:0可以转化成任意整数,包括负数,显然求LIS时尽量把0都放进去必定是正确的. 因此我们可以把0拿出来,对剩下的做O(nl ...
随机推荐
- CSS中的浮动清除
先来看一个实验:现在有两个div,div身上没有任何属性.每个div中都有li,这些li都是浮动的. 理想的效果:可实际的效果: 这个地方就涉及到浮动,因为两个父元素div都没有高度(或者小于子元素的 ...
- rsync+inotify实现数据的实时备份
一.rsync概述 1.1.rsync的优点与不足 rsync与传统的cp.tar备份方式相比,rsync具有安全性高.备份迅速.支持增量备份等优点,通过rsync可以解决对实时性要求不高的数据备份需 ...
- C程序编译执行过程
C程序编译执行过程 认识C编译执行过程,是C学习的开端. 简单说C语言从编码编译到执行要经历一下过程: C源代码 编译---->形成目标代码,目标代码是在目标机器上运行的代码. 连接-- ...
- CodeForces 620E New Year Tree
线段树+位运算 首先对树进行DFS,写出DFS序列,记录下每一个节点控制的区间范围.然后就是区间更新和区间查询了. 某段区间的颜色种类可以用位运算来表示,方便计算. 如果仅有第i种颜色,那么就用十进制 ...
- awk简单用法
awk是一个强大的文本分析工具,相对于grep的查找,sed的编辑,awk在其对数据分析并生成报告时,显得尤为强大.简单来说awk就是把文件逐行的读入,以空格为默认分隔符将每行切片,切开的部分再进行各 ...
- 不同版本的mysql字符集的默认编写
原来在5.1版本时,为了解决中文乱码问题设置默认字符集为utf8时,在my.ini内的 [mysql] 和 [mysqld] 项中都是写: default-character-set=utf8 到了5 ...
- iOS开发——沙箱
iphone沙箱模型的有三个文件夹,documents,tmp,Library.有时开发时要求我们保存一些数据在本地,这就用到了. 1.Documents 目录:您应该将所有de应用程序数据文件写入到 ...
- ios-Ineligible Devices 不被识别的设备
此问题大致分为几种: 1.设备不可用,出现Ineligible Devices,如下图: 此错误因为 Xcode的Deployment Target 大于设备的,选择和设备一样 或者 低于设备的.如下 ...
- CSS重设(reset)
在当今网页设计/开发实践中,使用CSS来为语义化的(X)HTML标记添加样式风格是重要的关键.在设计师们的梦想中都存在着这样的一个完美世界:所有的浏览器都能够理解和适用多有CSS规则,并且呈现相同的视 ...
- 【转】一大波实用的 bash 别名和函数
作为一个命令行探索者,你或许发现你自己一遍又一遍重复同样的命令.如果你总是用ssh进入到同一台电脑,如果你总是将一连串命令连接起来,如果你总是用同样的参数运行一个程序,你也许希望在这种不断的重复中为你 ...