Corn Fields
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 8062   Accepted: 4295

Description

Farmer John has purchased a lush new rectangular pasture composed of M by
N (1 ≤ M ≤ 12; 1 ≤ N ≤ 12) square parcels. He wants to grow some yummy corn for the cows on a number of squares. Regrettably, some of the squares are infertile and can't be planted. Canny FJ knows that the cows dislike eating close
to each other, so when choosing which squares to plant, he avoids choosing squares that are adjacent; no two chosen squares share an edge. He has not yet made the final choice as to which squares to plant.

Being a very open-minded man, Farmer John wants to consider all possible options for how to choose the squares for planting. He is so open-minded that he considers choosing no squares as a valid option! Please help Farmer John determine the number of ways
he can choose the squares to plant.

Input

Line 1: Two space-separated integers: M and
N

Lines 2..M+1: Line i+1 describes row i of the pasture with
N space-separated integers indicating whether a square is fertile (1 for fertile, 0 for infertile)

Output

Line 1: One integer: the number of ways that FJ can choose the squares modulo 100,000,000.

Sample Input

2 3
1 1 1
0 1 0

Sample Output

9

Hint

Number the squares as follows:

1 2 3
  4  

There are four ways to plant only on one squares (1, 2, 3, or 4), three ways to plant on two squares (13, 14, or 34), 1 way to plant on three squares (134), and one way to plant on no squares. 4+3+1+1=9.

Source

解题思路:

题意为有n行m列的长方形,分成n*m个格子,每一个格子标记为0或1,在这些格子里面放牛,当中1代表该格子能够放牛,0代表不能放牛,且相邻的两个格子不能同一时候有牛。问总的方案数。

思想为状态压缩。把每一行放牛的状态看作一个二进制数,dp[i][j]表示第i行状态为j时前i行共同拥有的方案数。

代码:

#include <iostream>
#include <string.h>
#include <algorithm>
using namespace std;
const int mod=100000000;
const int maxn=12;
int dp[maxn+1][(1<<maxn)+1];
int num[maxn+1];
int n,m; bool check(int i,int x)//检查第i行出现状态x是否合法
{
if((x&num[i])!=x)//非常巧妙,推断第i行出现的状态x是否合法,为什么这么写。由于0的地方不能放牛。
//合法状态与原始状态0位且为0,原始状态1位的地方与合法状态相应位且都等于合法状态位上的数字
return 0;
if(x&(x>>1)||x&(x<<1))//不能有相邻的两个1
return 0;
return 1;
} int main()
{
cin>>n>>m;
int x;
memset(num,0,sizeof(num));
memset(dp,0,sizeof(dp));
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
{
cin>>x;
if(x)
num[i]=num[i]|(1<<(j-1));//把每一行的状态保存到num[i]中去
}
int Max=(1<<m);
dp[0][0]=1;//注意这一句啊! for(int i=1;i<=n;i++)//枚举每一行
{
for(int j=0;j<Max;j++)
{
if(!check(i,j))
continue;
for(int k=0;k<Max;k++)
if((j&k)==0)
{
dp[i][j]+=dp[i-1][k];
if(dp[i][j]>=mod)
dp[i][j]%=mod;
}
}
}
int ans=0;
for(int i=0;i<Max;i++)
{
ans+=dp[n][i];
if(ans>=mod)
ans%=mod;
}
cout<<ans;
return 0;
}

[ACM] POJ 3254 Corn Fields(状态压缩)的更多相关文章

  1. POJ 3254. Corn Fields 状态压缩DP (入门级)

    Corn Fields Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 9806   Accepted: 5185 Descr ...

  2. POJ 3254 Corn Fields(状态压缩DP)

    Corn Fields Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 4739   Accepted: 2506 Descr ...

  3. POJ 3254 Corn Fields 状态压缩DP (C++/Java)

    id=3254">http://poj.org/problem? id=3254 题目大意: 一个农民有n行m列的地方,每一个格子用1代表能够种草地,而0不能够.放牛仅仅能在有草地的. ...

  4. POJ 3254 Corn Fields (状态压缩DP)

    题意:在由方格组成的矩形里面种草,相邻方格不能都种草,有障碍的地方不能种草,问有多少种种草方案(不种也算一种方案). 分析:方格边长范围只有12,用状态压缩dp好解决. 预处理:每一行的障碍用一个状态 ...

  5. POJ 3254 Corn Fields状态压缩DP

    下面有别人的题解报告,并且不止这一个状态压缩题的哦···· http://blog.csdn.net/accry/article/details/6607703 下面是我的代码,代码很挫,绝对有很大的 ...

  6. POJ 3254 Corn Fields 状态压缩

    这题对我真的非常难.实在做不出来,就去百度了,搜到了一种状压DP的方法.这是第一种 详细见凝视 #include <cstdio> #include <cstring> #in ...

  7. poj - 3254 Corn Fields (状态压缩dp入门)

    http://poj.org/problem?id=3254 参考:http://blog.csdn.net/accry/article/details/6607703 农夫想在m*n的土地上种玉米, ...

  8. poj 3254 Corn Fields 国家压缩dp

    意甲冠军: 要在m行n陆行,有一些格您可以种树,别人做不到的.不相邻的树,我问了一些不同的共同拥有的法律. 分析: 从后往前种,子问题向父问题扩展,当种到某一格时仅仅有他和他后面的n-1个格子的情况对 ...

  9. poj 3465 Corn Fields 状态压缩

    题目链接:http://poj.org/problem?id=3254 #include <cstdio> #include <cstring> #include <io ...

随机推荐

  1. [Python] heapq简介

    [Python] heapq简介 « Lonely Coder [Python] heapq简介 judezhan 发布于 2012 年 8 月 8 日 暂无评论 发表评论 假设你需要维护一个列表,这 ...

  2. 使用FragmentTabhost取代Tabhost

       如今Fragment使用越来越广了,尽管Fragment寄生在Activity下.可是它的出现对于开发人员来说是一件很幸运的事,使开发的效率更高效了.好了以下就说说 FragmentTabhos ...

  3. 黑马程序员:Java基础总结----泛型(高级)

    黑马程序员:Java基础总结 泛型(高级)   ASP.Net+Android+IO开发 . .Net培训 .期待与您交流! 泛型(高级) 泛型是提供给javac编译器使用的,可以限定集合中的输入类型 ...

  4. git digest

    .gitignore文件示例: .classpath .project .idea/ .settings/ target/ *~ *.iml *.log *.tmp https://zhuanlan. ...

  5. ajaxterm不好还是gateone好

    http://pkgs.org/centos-5-rhel-5/epel-i386/Ajaxterm-0.10-8.el5.noarch.rpm.html Web SSH 客户端Ajaxterm安装 ...

  6. Java中的工具类和新特性

    1:Collections集合框架工具类: /* 集合框架的工具类. Collections:集合框架的工具类.里面定义的都是静态方法. Collections和Collection有什么差别? Co ...

  7. 在不同版本号hdfs集群之间转移数据

    在不同版本号hdfs集群之间转移数据     最简单的办法就是把src集群的数据导到本地,然后起还有一个进程将本地数据传到des集群上去. 只是这有几个问题: 效率减少 占用本地磁盘空间 不能应付实时 ...

  8. Spring相框

    1.什么是Spring相框?Spring有哪些主要模块框架? Spring框架是一个为Java应用程序的开发提供了综合.广泛的基础性支持的Java平台. Spring帮助开发人员攻克了开发中基础性的问 ...

  9. windows服务的创建、安装和调试

    1.创建 windows服务 项目   文件 -> 新建项目 -> 已安装的模板 -> Visual C# -> windows ,在右侧窗口选择"windows 服 ...

  10. SE 2014年4月18日

    实验需求:   R1 R2 R3用环回口建立IBGP对等体(使用对等体组),AS号为100                     R4 R5 R6用环回口建立IBGP对等体(使用对等体组),AS号为 ...