Cycling

Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1418    Accepted Submission(s): 467

Problem Description
You want to cycle to a programming contest. The shortest route to the contest might be over the tops of some mountains and through some valleys. From past experience you know that you perform badly in programming contests after experiencing large differences in altitude. Therefore you decide to take the route that minimizes the altitude difference, where the altitude difference of a route is the difference between the maximum and the minimum height on the route. Your job is to write a program that finds this route.
You are given:

the number of crossings and their altitudes, and

the roads by which these crossings are connected.
Your program must find the route that minimizes the altitude difference between the highest and the lowest point on the route. If there are multiple possibilities, choose the shortest one.
For example:

In this case the shortest path from 1 to 7 would be through 2, 3 and 4, but the altitude difference of that path is 8. So, you prefer to go through 5, 6 and 4 for an altitude difference of 2. (Note that going from 6 directly to 7 directly would have the same difference in altitude, but the path would be longer!)

 
Input
On the first line an integer t (1 <= t <= 100): the number of test cases. Then for each test case:

One line with two integers n (1 <= n <= 100) and m (0 <= m <= 5000): the number of crossings and the number of roads. The crossings are numbered 1..n.

n lines with one integer hi (0 <= hi <= 1 000 000 000): the altitude of the i-th crossing.

m lines with three integers aj , bj (1 <= aj , bj <= n) and cj (1 <= cj <= 1 000 000): this indicates that there is a two-way road between crossings aj and bj of length cj . You may assume that the altitude on a road between two crossings changes linearly.
You start at crossing 1 and the contest is at crossing n. It is guaranteed that it is possible to reach the programming contest from your home.

 
Output
For each testcase, output one line with two integers separated by a single space:

the minimum altitude difference, and

the length of shortest path with this altitude difference.

 
Sample Input
1
7 9
4 9 1 3
3
5
4
1 2 1
2 3 1
3 4 1
4 7 1
1 5 4
5 6 4
6 7 4
5 3 2
6 4 2
 
Sample Output
2 11
 
Source
 题意:
n个点,m条路,每个点有一个权值,求从1点出发到n点,经过的点的权值最大与最小之差最小的一条最短路。
代码:
//这题气炸了,用dijk怎么做怎么不对,改了spfa才过的。要求最小差值的最短路可以把所有的点之间的差值
//算出来,按照差值从小到大排序,从小到大枚举每一个差值所对应的高度上下界,在这个范围之内求
//最短路,求到的第一个就是结果。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
#include<vector>
using namespace std;
const int inf=0x7fffffff;
int dis[],vis[],hig[];
int up,low,t,n,m,cnt;
struct Lu
{
int x,y,w;
}L[];
bool cmp(Lu x,Lu y) {return x.w<y.w;}
struct node{
int to,value;
};
vector<node>g[];
int spfa()
{
int s=;
for(int i=;i<=n;i++)
dis[i]=inf;
memset(vis,,sizeof(vis));
vis[s]=;
dis[s]=;
queue<int>q;
q.push(s);
while(!q.empty()){
int cur=q.front();
q.pop();
vis[cur]=;
if(hig[cur]<low||hig[cur]>up) continue; //起始点也不例外
for(int i=;i<(int)g[cur].size();i++){
int k=g[cur][i].to;
if(hig[k]<low||hig[k]>up) continue; //在范围之中
if(dis[k]>dis[cur]+g[cur][i].value){
dis[k]=dis[cur]+g[cur][i].value;
if(!vis[k]){
vis[k]=;
q.push(k);
}
}
}
}
return dis[n];
}
int main()
{
int x,y,z,ans1,ans2;
scanf("%d",&t);
while(t--){
scanf("%d%d",&n,&m);
cnt=;ans2=inf;
for(int i=;i<=n;i++){
g[i].clear(); //记住。
scanf("%d",&hig[i]);
}
for(int i=;i<=n;i++){
for(int j=i;j<=n;j++){ //有可能起点等于终点所以j从i开始
L[cnt].x=min(hig[i],hig[j]);
L[cnt].y=max(hig[i],hig[j]);
L[cnt].w=L[cnt].y-L[cnt].x;
cnt++;
}
}
for(int i=;i<=m;i++){
scanf("%d%d%d",&x,&y,&z);
node no;
no.to=y;
no.value=z;
g[x].push_back(no);
no.to=x;
g[y].push_back(no);
}
sort(L,L+cnt,cmp);
int flag=,tmp;
for(int i=;i<cnt;i++){
if(flag&&tmp<L[i].w) break;//出现高度差一样,最短路不同的情况
low=L[i].x;up=L[i].y;
int ans=spfa();
if(ans!=inf){
ans1=L[i].w;
ans2=min(ans2,ans);
flag=;
tmp=L[i].w;
}
}
printf("%d %d\n",ans1,ans2);
}
return ;
}

HDU2363 最短路+贪心的更多相关文章

  1. Codeforces Round #303 (Div. 2) E. Paths and Trees 最短路+贪心

    题目链接: 题目 E. Paths and Trees time limit per test 3 seconds memory limit per test 256 megabytes inputs ...

  2. Codeforces 1076D Edge Deletion 【最短路+贪心】

    <题目链接> 题目大意: n个点,m条边的无向图,现在需要删除一些边,使得剩下的边数不能超过K条.1点为起点,如果1到 i 点的最短距离与删除边之前的最短距离相同,则称 i 为 " ...

  3. 【CF1076D】Edge Deletion 最短路+贪心

    题目大意:给定 N 个点 M 条边的无向简单联通图,留下最多 K 条边,求剩下的点里面从 1 号顶点到其余各点最短路大小等于原先最短路大小的点最多怎么构造. 题解:我们可以在第一次跑 dij 时直接采 ...

  4. Codeforces 545E. Paths and Trees[最短路+贪心]

    [题目大意] 题目将从某点出发的所有最短路方案中,选择边权和最小的最短路方案,称为最短生成树. 题目要求一颗最短生成树,输出总边权和与选取边的编号.[题意分析] 比如下面的数据: 5 5 1 2 2 ...

  5. Forethought Future Cup - Elimination Round D 贡献 + 推公式 + 最短路 + 贪心

    https://codeforces.com/contest/1146/problem/D 题意 有一只青蛙,一开始在0位置上,每次可以向前跳a,或者向后跳b,定义\(f(x)\)为青蛙在不跳出区间[ ...

  6. Codeforces Round #303 (Div. 2)(CF545) E Paths and Trees(最短路+贪心)

    题意 求一个生成树,使得任意点到源点的最短路等于原图中的最短路.再让这个生成树边权和最小. http://codeforces.com/contest/545/problem/E 思路 先Dijkst ...

  7. [CSP-S模拟测试]:任务分配(最短路+贪心+DP)

    题目传送门(内部题149) 输入格式 每个测试点第一行为四个正整数$n,b,s,m$,含义如题目所述. 接下来$m$行,每行三个非负整数$u,v,l$,表示从点$u$到点$v$有一条权值为$l$的有向 ...

  8. UOJ244 短路 贪心

    正解:贪心 解题报告: 传送门! 贪心真的都是些神仙题,,,以我的脑子可能是不存在自己想出解这种事情了QAQ 然后直接港这道题解法趴,,, 首先因为这个是对称的,所以显然的是可以画一条斜右上的对角线, ...

  9. 【AT2434】JOI 公園 (JOI Park) 最短路+贪心

    题解 我的歪解 我首先想的是分治,我想二分肯定不行,因为它是没有单调性的. 我想了一下感觉它的大部分数据应该是有凸性的(例如\(y=x^2\)的函数图像),所以可以三分. 下面是我的三分代码(骗了不少 ...

随机推荐

  1. 用PopWindow做下拉框

    最近在做下拉框,本来想用spinner,可是spinner达不到项目要求,跟同学同事问了一圈,都在用popwindow, 网上看了一下,popwindow挺简单的,可定制性挺强的,符合我的要求,所以, ...

  2. flexbox应用举例

    我们常说的"flexbox"其实包含"父元素","子元素"2个部分,将"父元素"定义为一个flexbox,则在" ...

  3. 【.NET】电话号码打星号(隐藏部分)

    描述:支持多个电话: //隐藏部分内容,支持一个值有多个联系方式,用逗号隔开.//参数:value - 值,subIndex - 从第几位开始,subQty - 隐藏几位数 protected str ...

  4. python爆破zip脚本

    最近在提高自己编程能力,拿一些实用的小工具练下.该脚本为python语言,主要涉及模块zipfile,threadings模块. 功能:暴力猜解zip解压密码 #coding: utf-8 impor ...

  5. android中edittext被键盘挡住问题

    最近开始新项目,做注册页时候由于ui布局问题,edittext被键盘挡住了. 在stackoverflow上找了一遍,有提到在对应activity中设置windowSoftInputMode, 例如: ...

  6. WPF和Winform的一些界面控件

    DevExpressTelerikMahApps.MetroModern UI for WPFModernWPFExtended WPF Toolkit™ Community EditionModer ...

  7. Fedora24 升级到25

    1 安装dnf-plugin-system-upgrade dnf install dnf-plugin-system-upgrade 2 更新软件包 dnf system-upgrade downl ...

  8. package scripts在前端项目的使用

    前端的项目往往依赖了很多打包.部署工具,比如grunt,gulp,webpack.....,在这么多打包.部署工具里,有这各自的命令,这样给项目带来了很多烦恼,不同的项目不同的命令,有没有办法统一接口 ...

  9. Sonatype Nexus 服务启动失败问题解决

    Sonatype Nexus 服务启动失败问题解决 问题前述: 近日在开发机本机安装了 Oracle 数据库快捷版 11g2 之后,重启电脑后发现本机的maven代理服务无法访问. 现象 通过 Win ...

  10. jmeter之jtl文件解析

    我们知道命令行的方式执行完成jmeter后,会生成jtl文件,里面打开后就是一行行的测试结果, <httpSample t="1" lt="1" ts=& ...