Intervals
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 20786   Accepted: 7866

Description

You are given n closed, integer intervals [ai, bi] and n integers c1, ..., cn. 

Write a program that: 

reads the number of intervals, their end points and integers c1, ..., cn from the standard input, 

computes the minimal size of a set Z of integers which has at least ci common elements with interval [ai, bi], for each i=1,2,...,n, 

writes the answer to the standard output. 

Input

The first line of the input contains an integer n (1 <= n <= 50000) -- the number of intervals. The following n lines describe the intervals. The (i+1)-th line of the input contains three integers ai, bi and ci separated by single spaces and such that 0 <=
ai <= bi <= 50000 and 1 <= ci <= bi - ai+1.

Output

The output contains exactly one integer equal to the minimal size of set Z sharing at least ci elements with interval [ai, bi], for each i=1,2,...,n.

Sample Input

5
3 7 3
8 10 3
6 8 1
1 3 1
10 11 1

Sample Output

6

Source



一道典型的差分约束:
题目意思:
给你m个区间。每一个区间至少要取c个数
问最少取多少个数

解法:
用X(i) 表示前i个数中取了多少个数
对于每一个区间的约束建立下列不等不等式:
X(a) - X(b+1) <= -c

除此之外还有补充另外的边
X(i+1)-X(i)  <= 1
要求的是
X(sink) - X(src) >= d (d即为所求)
X(src)-X(sink) <= -d
求sink到src的最短路径
SPFA搞定

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
using namespace std;
const int maxn = 50000+10000;
const int INF = 1e9;
int n;
int src,sink;
bool inQue[maxn];
int dist[maxn];
queue<int>que;
struct edge{
int to,next,w;
edge(int to,int next,int w):to(to),next(next),w(w){}
};
int head[maxn];
vector<edge> e; void addedge(int from,int to,int w){
e.push_back(edge(to,head[from],w));
head[from] = e.size()-1;
}
void spfa(){
for(int i = src; i <= sink; i++){
inQue[i] = 0;
dist[i] = INF;
}
inQue[sink] = 1;
que.push(sink);
dist[sink] = 0;
while(!que.empty()){
int u = que.front();
que.pop();
inQue[u] = 0;
for(int i = head[u]; i != -1; i = e[i].next){
if(dist[e[i].to] > dist[u]+e[i].w){
dist[e[i].to] = dist[u]+e[i].w;
if(!inQue[e[i].to]){
inQue[e[i].to] = 1;
que.push(e[i].to);
}
}
}
} }
int main(){ int m;
freopen("in","r",stdin);
while(~scanf("%d",&m)){
e.clear();
src = maxn,sink = -1;
memset(head,-1,sizeof head);
while(m--){
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
++b;
src = min(src,a);
sink = max(sink,b);
addedge(b,a,-c);
}
for(int i = src; i < sink; i++){
addedge(i+1,i,0);
addedge(i,i+1,1);
}
spfa();
cout<<-dist[src]<<endl; }
return 0;
}



版权声明:本文博客原创文章,博客,未经同意,不得转载。

POJ1201-Intervals(差动限制)的更多相关文章

  1. POJ1201 Intervals[差分约束系统]

    Intervals Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 26028   Accepted: 9952 Descri ...

  2. POJ1201 Intervals差分约束系统(最短路)

    Description You are given n closed, integer intervals [ai, bi] and n integers c1, ..., cn. Write a p ...

  3. POJ1201 Intervals

    Description You are given n closed, integer intervals [ai, bi] and n integers c1, ..., cn. Write a p ...

  4. POJ1201 Intervals(差分约束)

    Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 28416   Accepted: 10966 Description You ...

  5. POJ1201 Intervals 【差分约束】

    题目链接 POJ1201 题解 差分约束 令\(a[i]\)表示是否选择\(i\),\(s[i]\)表示\(a[i]\)的前缀和 对\(s[i] \quad i \in [-1,50000]\)分别建 ...

  6. POJ1201 Intervals【差分约束系统】

    Description You are given n closed, integer intervals [ai, bi] and n integers c1, ..., cn. Write a p ...

  7. POJ1201 Intervals (差分约束)

    You are given n closed, integer intervals [ai, bi] and n integers c1, ..., cn. Write a program that: ...

  8. POJ1201 Intervals(差分约束系统)

    与ZOJ2770一个建模方式,前缀和当作点. 对于每个区间[a,b]有这么个条件,Sa-Sb-1>=c,然后我就那样连边WA了好几次. 后来偷看数据才想到这题还有两个隐藏的约束条件. 这题前缀和 ...

  9. poj1201 Intervals【差分约束+SPFA】

    转载请注明出处,谢谢:http://www.cnblogs.com/KirisameMarisa/p/4303365.html   ---by 墨染之樱花 题目链接:http://poj.org/pr ...

  10. POJ 1201 &amp;&amp; HDU 1384 Intervals(差动制动系统)

    职务地址:POJ 1201   HDU 1384 依据题目意思.能够列出不等式例如以下: Sj-Si>=c; Si-S(i-1)>=0; S(i-1)-Si>=-1; 然后用最短路s ...

随机推荐

  1. jquery省市区三级联动

    jquery省市区三级联动(数据来源国家统计局官网)内附源码下载 很久很久没有写博了. 今天更新了项目的省市区三级联动数据,更新后最新的海南三沙都有,分享给所有需要的小伙伴们... JQUERY + ...

  2. 任意长度的正小数的加法(YT新人之巅峰大决战05)

    Problem Description 话说,经过了漫长的一个多月,小明已经成长了许多,所以他改了一个名字叫"大明". 这时他已经不是那个只会做100以内加法的那个"小明 ...

  3. poj 1061 扩展欧几里德同余方程求解

    摘要写在一瞪眼. #include<iostream> using namespace std; long long exgcd(long long a,long long b,long ...

  4. 用DOS命令获取文件列表

    其实就是两个命令:dir 跟 tree 在C:盘根目录下生成了一个名为“filelist.txt”的文本文件,该文件中即包含D:盘的文件夹列表. dir d:\ >c:\filelist.txt ...

  5. linux input如何固定设备event handler

    于qt开发时间.遇到的问题,usb输入设备(鼠标器,usb 电容屏)在动力分配后自己主动input节点,实例usb鼠标停留电后,分配给自己的主动性/dev/input/event0 mouse0.第一 ...

  6. HDU 4430 &amp; ZOJ 3665 Yukari&#39;s Birthday(二分法+枚举)

    主题链接: HDU:pid=4430" target="_blank">http://acm.hdu.edu.cn/showproblem.php?pid=4430 ...

  7. JAVA学习(二):JDK介绍及其结构、用途

    JDK介绍及其结构.用途 1.JDK的介绍 JDK是Java Development Kit 的缩写.是Sun Microsystems针对Java开发员的产品.它由一个处于操作系统层之上的执行环境还 ...

  8. Java学习路径:不走弯路,这是一条捷径

    1.如何学习编程? JAVA是一种平台.也是一种程序设计语言,怎样学好程序设计不只适用于JAVA,对C++等其它程序设计语言也一样管用.有编程高手觉得,JAVA也好C也好没什么分别,拿来就用.为什么他 ...

  9. CVE-2014-4113:飓风熊猫(HURRICANE PANDA)Win64bit提起权0day破绽

    飓风熊猫被觉得是原产于中国.主要针对基础设施公司的先进攻击者.我们知道它们除了拥有0day漏洞外.还有其它的三种本地特权提升漏洞.我们知道飓风熊猫使用的是"ChinaChopper" ...

  10. Androida规划nt打包

    1.准备工作 (1)首先安装好ant工具 (2)生成keystore 在jdk的bin文件夹下 输入 keytool -genkey -alias android.keystore -keyalg R ...