Tensorflow细节-P112-模型持久化
第一个代码
import tensorflow as tf
v1 = tf.Variable(tf.random_normal([1], stddev=1, seed=1))
v2 = tf.Variable(tf.random_normal([1], stddev=1, seed=1))
result = v1 + v2
init_op = tf.global_variables_initializer()
saver = tf.train.Saver()
with tf.Session() as sess:
sess.run(init_op)
saver.save(sess, "Saved_model/model.ckpt")
看看看,就是上面:注意两个方面
(1)saver = tf.train.Saver()提前设定好
(2)saver.save(sess, "Saved_model/model.ckpt")这里面有sess要注意!
第二个代码
import tensorflow as tf
v1 = tf.Variable(tf.random_normal([1], stddev=1, seed=1))
v2 = tf.Variable(tf.random_normal([1], stddev=1, seed=1))
result = v1 + v2
init_op = tf.global_variables_initializer()
saver = tf.train.Saver()
with tf.Session() as sess:
saver.restore(sess, "Saved_model/model.ckpt")
print sess.run(result)
这里有三个要注意的点
(1)上面定义好了模型(变量名字与第一个代码一样),Saver()里什么都没有
(2)saver.restore(sess, "Saved_model/model.ckpt")里有sess,ckpt是数据
(3)result是读取数据的结果,跟这里的变量没关系
第三个代码
import tensorflow as tf
saver = tf.train.import_meta_graph("Saved_model/model.ckpt.meta")
v3 = tf.Variable(tf.random_normal([1], stddev=1, seed=1))
with tf.Session() as sess:
saver.restore(sess, "Saved_model/model.ckpt")
print sess.run(v1)
print sess.run(v2)
print sess.run(v3)
看这里,由于v3是一个变量,要输出的话需要先进行初始化(v1、v2不用)
下面,就是滑动平均了
import tensorflow as tf
v = tf.Variable(0, dtype=tf.float32, name="v")
for variables in tf.global_variables():
print(variables.name)
ema = tf.train.ExponentialMovingAverage(0.99)
maintain_averages_op = ema.apply(tf.global_variables())
for variables in tf.global_variables():
print(variables.name)
saver = tf.train.Saver()
with tf.Session() as sess:
init_op = tf.global_variables_initializer()
sess.run(init_op)
sess.run(tf.assign(v, 10))
sess.run(maintain_averages_op)
# 保存的时候会将v:0 v/ExponentialMovingAverage:0这两个变量都存下来。
saver.save(sess, "Saved_model/model2.ckpt")
print(sess.run([v, ema.average(v)]))

从上面的代码和图片可以看到开始时是一个变量,后来经过maintain_averages_op = ema.apply(tf.global_variables())就多了一个影子变量,这样子,就把影子变量存好了
下面就是加载滑动平均的影子变量了
v = tf.Variable(0, dtype=tf.float32, name="v")
# 通过变量重命名将原来变量v的滑动平均值直接赋值给v。
saver = tf.train.Saver({"v/ExponentialMovingAverage": v})
with tf.Session() as sess:
saver.restore(sess, "Saved_model/model2.ckpt")
print sess.run(v)
注意重命名
Tensorflow细节-P112-模型持久化的更多相关文章
- tensorflow学习笔记——模型持久化的原理,将CKPT转为pb文件,使用pb模型预测
由题目就可以看出,本节内容分为三部分,第一部分就是如何将训练好的模型持久化,并学习模型持久化的原理,第二部分就是如何将CKPT转化为pb文件,第三部分就是如何使用pb模型进行预测. 一,模型持久化 为 ...
- Tensorflow 模型持久化saver及加载图结构
主要内容: 1. 直接保存,加载模型; (可以指定加载,保存的var_list) 2. 加载,保存指定变量的模型 3. slim加载模型使用 4. 加载模型图结构和参数等 tensorflow 恢复部 ...
- FaceRank-人脸打分基于 TensorFlow 的 CNN 模型
FaceRank-人脸打分基于 TensorFlow 的 CNN 模型 隐私 因为隐私问题,训练图片集并不提供,稍微可能会放一些卡通图片. 数据集 130张 128*128 张网络图片,图片名: 1- ...
- Tensorflow滑动平均模型tf.train.ExponentialMovingAverage解析
觉得有用的话,欢迎一起讨论相互学习~Follow Me 移动平均法相关知识 移动平均法又称滑动平均法.滑动平均模型法(Moving average,MA) 什么是移动平均法 移动平均法是用一组最近的实 ...
- tensorflow初次接触记录,我用python写的tensorflow第一个模型
tensorflow初次接触记录,我用python写的tensorflow第一个模型 刚用python写的tensorflow机器学习代码,训练60000张手写文字图片,多层神经网络学习拟合17000 ...
- tensorflow笔记:模型的保存与训练过程可视化
tensorflow笔记系列: (一) tensorflow笔记:流程,概念和简单代码注释 (二) tensorflow笔记:多层CNN代码分析 (三) tensorflow笔记:多层LSTM代码分析 ...
- 139、TensorFlow Serving 实现模型的部署(二) TextCnn文本分类模型
昨晚终于实现了Tensorflow模型的部署 使用TensorFlow Serving 1.使用Docker 获取Tensorflow Serving的镜像,Docker在国内的需要将镜像的Repos ...
- TensorFlow 训练好模型参数的保存和恢复代码
TensorFlow 训练好模型参数的保存和恢复代码,之前就在想模型不应该每次要个结果都要重新训练一遍吧,应该训练一次就可以一直使用吧. TensorFlow 提供了 Saver 类,可以进行保存和恢 ...
- mnist手写数字识别——深度学习入门项目(tensorflow+keras+Sequential模型)
前言 今天记录一下深度学习的另外一个入门项目——<mnist数据集手写数字识别>,这是一个入门必备的学习案例,主要使用了tensorflow下的keras网络结构的Sequential模型 ...
随机推荐
- Word 自带公式使用方法技巧(11)
1. 快捷命令 在Word中输入「Alt+=」,可以打开Word中自带公式编辑器.这个编辑器似乎没有什么特别,但其实 Word 2010 以后是支持 LaTeX 语法的.常用规则如下: 分号: a/b ...
- Python使用RMF聚类分析客户价值
投资机构或电商企业等积累的客户交易数据繁杂.需要根据用户的以往消费记录分析出不同用户群体的特征与价值,再针对不同群体提供不同的营销策略. 用户分析指标 根据美国数据库营销研究所Arthur Hughe ...
- listWdiget控件
2019-07-15 1.常用方法的功能 listWidget = QListWidget() #实例化一个(item base)的列表 listWidget.addItem('dd') #添加一个项 ...
- 44 容器(三)——ArrayList索引相关方法
方法都比较简单,这里列出来即可: add(index,ele) //忘制定下标插入元素 add(ele) addAll(Collection <C> c) 泛型必须与调用add的泛型保持一 ...
- kubernetes 实践四:Pod详解
本篇是关于k8s的Pod,主要包括Pod和容器的使用.Pod的控制和调度管理.应用配置管理等内容. Pod的定义 Pod是k8s的核心概念一直,就名字一样,是k8s中一个逻辑概念.Pod是docekr ...
- ArcGIS JS 使用Proxy之 Printing Tools unable to connect to mapServer
ArcGIS JS使用Proxy.ashx将地图服务隐藏,并在微博服务器端增加了地图服务权限判断. Proxy.ashx做了如下设置, <serverUrl url="http://l ...
- CF936C Lock Puzzle 构造
传送门 好久不做构造题脑子都僵化了qwq 无解的条件是\(s\)包含的字符可重集和\(t\)包含的字符可重集不相等,相等的时候下文会给出一种一定可行的构造方案. 考虑增量构造.定义某个字符串\(x\) ...
- application.yml报错:a global security auto-configuration is now provided
报错原因: Spring Boot 1.5升级到2.0改动 security开头的配置及management.security均已过期 Actuator 配置属性变化 Endpoint变化 参考来源: ...
- 全栈项目|小书架|微信小程序-项目结构设计分包
前面的文章 介绍了服务端的基础搭建以及用户模块的设计,接下来就是在服务端和客户端实现具体的业务了. 本篇文章先来介绍微信小程序开发的项目结构设计,也就是项目分包情况. 由于项目是在<极客时间-9 ...
- 快速生成html文本文档——typora
下载地址:https://www.typora.io/#windows 一.工具界面: 二.使用工具编辑: 三.导出为html: 四.打开html查看: Markdown语法教程:https://ww ...