谈一下尺取法的经典题。

第K大区间

定义一个区间的值为其众数出现的次数。

现给出n个数,求将所有区间的值排序后,第K大的值为多少。

众数:区间里出现次数最多的数字,例如:1 1 2 2 2,区间[1 1]的众数为1,区间[3 5]的众数为2

题解

二分这个值,转化成判断问题。

将求第k大变成求第n*(n-1)/2-k+1小,那么我们就可以用尺取法计算值小于等于二分值的区间的个数。

区间

在数轴上有 n 个闭区间 [l1,r1], [l2,r2], . . . , [ln,rn]。现在要从中选出 m 个区间,使得这 m 个区间共同包含至少一个位置。换句话说,就是使得存在一个 x,使得对于每一个被选中的区[li,ri],都有 li ≤ x ≤ ri

对于一个合法的选取方案,它的花费为被选中的最长区间长度减去被选中的最短区间长度。区间 [li,ri] 的长度定义为 ri − li,即等于它的右端点的值减去左端点的值。

求所有合法方案中最小的花费。如果不存在合法的方案,输出 −1。

n ≤ 500000,m ≤ 200000.

题解

将坐标离散化之后,用线段树维护点的覆盖次数。

那么用尺取法即可求出最小花费。

CO int N=500000+10,M=2097152+10;
struct section {int l,r,len;}sec[N];
vector<int> pos;
int tree[M],tag[M];
#define lc (x<<1)
#define rc (x<<1|1)
IN void push_up(int x){
tree[x]=max(tree[lc],tree[rc]);
}
IN void push_down(int x){
if(tag[x]){
tree[lc]+=tag[x],tag[lc]+=tag[x];
tree[rc]+=tag[x],tag[rc]+=tag[x];
tag[x]=0;
}
}
void change(int x,int l,int r,int ql,int qr,int v){
if(ql<=l and r<=qr){
tree[x]+=v,tag[x]+=v;
return;
}
push_down(x);
int mid=(l+r)>>1;
if(ql<=mid) change(lc,l,mid,ql,qr,v);
if(qr>mid) change(rc,mid+1,r,ql,qr,v);
push_up(x);
}
int main(){
int n=read<int>(),m=read<int>();
for(int i=1;i<=n;++i){
read(sec[i].l),read(sec[i].r),sec[i].len=sec[i].r-sec[i].l;
pos.push_back(sec[i].l),pos.push_back(sec[i].r);
}
sort(sec+1,sec+n+1,[](CO section&a,CO section&b)->bool{
return a.len<b.len;
});
sort(pos.begin(),pos.end()),pos.erase(unique(pos.begin(),pos.end()),pos.end());
for(int i=1;i<=n;++i){
sec[i].l=lower_bound(pos.begin(),pos.end(),sec[i].l)-pos.begin()+1;
sec[i].r=lower_bound(pos.begin(),pos.end(),sec[i].r)-pos.begin()+1;
}
int ans=1e9;
for(int l=1,r=0;l<=n;++l){
while(r<n and tree[1]<m)
++r,change(1,1,pos.size(),sec[r].l,sec[r].r,1);
if(tree[1]==m) ans=min(ans,sec[r].len-sec[l].len);
change(1,1,pos.size(),sec[l].l,sec[l].r,-1);
}
if(ans==1e9) puts("-1");
else printf("%d\n",ans);
return 0;
}

51Nod1686 第K大区间 和 NOI2016 区间的更多相关文章

  1. 51nod-1686 第K大区间(二分+尺取法)

    题目链接: 第K大区间 基准时间限制:1 秒 空间限制:131072 KB    定义一个区间的值为其众数出现的次数.现给出n个数,求将所有区间的值排序后,第K大的值为多少. Input 第一行两个数 ...

  2. 主席树入门——询问区间第k大pos2104,询问区间<=k的元素个数hdu4417

    poj2104找了个板子..,但是各种IO还可以进行优化 /* 找区间[l,r]第k大的数 */ #include<iostream> #include<cstring> #i ...

  3. 【大杀器】利用划分树秒杀区间内第k大的数

    最近看了一道题,大概就是给出一个序列,不断询问其子区间内第k大的数,下面是个截图 绕了一圈没找到中文版题目,if(你是大佬) then 去看截图:else{我来解释:给出一个整数n,和一个整数m,分别 ...

  4. 静态区间第k大 树套树解法

    然而过不去你谷的模板 思路: 值域线段树\([l,r]\)代表一棵值域在\([l,r]\)范围内的点构成的一颗平衡树 平衡树的\(BST\)权值为点在序列中的位置 查询区间第\(k\)大值时 左区间在 ...

  5. POJ 2388 Who's in the Middle (快速选择算法:O(N)求数列第K大)

    [题意]求数列中间项. ---这里可以扩展到数列第K项. 第一次做的时候直接排序水过了= =--这一次回头来学O(N)的快速选择算法. 快速选择算法基于快速排序的过程,每个阶段我们选择一个数为基准,并 ...

  6. 求数列中第K大的数

    原创 利用到快速排序的思想,快速排序思想:https://www.cnblogs.com/chiweiming/p/9188984.html array代表存放数列的数组,K代表第K大的数,mid代表 ...

  7. 区间第K大(一)

    Problem: 给定无序序列S:[b, e),求S中第K大的元素. Solution 1.裸排序 2.现将区间均分成两段,S1, S2,对S1,S2分别排序,然后

  8. [51nod1685]第k大区间

    Description 定义一个长度为奇数的区间的值为其所包含的的元素的中位数. 现给出$n$个数,求将所有长度为奇数的区间的值排序后,第$k$大的值为多少. Input 第一行两个数$n$和$k$. ...

  9. 数据结构2 静态区间第K大/第K小

    给定数组$A[1...N]$, 区间$[L,R]$中第$K$大/小的数的指将$A[L...R]$中的数从大到小/从小到大排序后的第$K$个. "静态"指的是不带修改. 这个问题有多 ...

随机推荐

  1. JMeter工具学习(二)——获取登录 token

    备注: JMeter版本4.0 JDK版本1.8 1,新增线程组 2,添加http请求(如何添加Http请求查看详情) 3,添加正则表达式提取器(regular expression extracto ...

  2. 【剑指offer】剪绳子

    题目描述 给你一根长度为n的绳子,请把绳子剪成m段(m.n都是整数,n>1并且m>1),每段绳子的长度记为k[0],k[1],...,k[m].请问k[0]xk[1]x...xk[m]可能 ...

  3. python模块、异常

    1. python 模块 模块是一个包含所有你定义的函数和变量的文件,其后缀名是.py.模块可以被别的程序引入,以使用该模块中的函数等功能.这也是使用 python 标准库的方法.(有点像java的c ...

  4. vue的package.json文件理解

    参考文档: https://www.cnblogs.com/tzyy/p/5193811.html#_h1_0 https://www.cnblogs.com/hongdiandian/p/83210 ...

  5. 百度前端技术学院-task1.3源代码

    因为其中有图片,所以就给有图片的位置加了边框和设置了大小,这样哪怕图片不显示也可以知道在哪里. <!DOCTYPE html> <html> <head> < ...

  6. APIO2019简要题解

    Luogu P5444 [APIO2019]奇怪装置 看到这种题,我们肯定会想到\((x,y)\)一定有循环 我们要找到循环节的长度 推一下发现\(x\)的循环节长为\(\frac{AB}{B+1}\ ...

  7. python函数对变量的作用及遵循的原则

    1.全局变量和局部变量 全局变量:指在函数之外定义的变量,一般没有缩进,在程序执行的全过程有效 局部变量:指在函数内部使用的变量,仅在函数内部有效,当函数退出时变量将不存在 例如: n=1 #n是全局 ...

  8. C#中精确计时的一点收获 Stopwatch

    http://www.cnblogs.com/jintianhu/archive/2010/09/01/1815031.html 参考: https://www.cnblogs.com/kissdod ...

  9. PHP清除数组中有字符串空格的方法

    清除数组中字符串有空格的方法函数 function TrimArray($arr){ if (!is_array($arr)){ return $arr; } while (list($key, $v ...

  10. c# mvc webapi的put报405错误

    程序在本机调试可正常修改,本机是iis11 放到服务器上,报错了:405.服务器iis7.0 返回的错误页面: <!DOCTYPE html PUBLIC "-//W3C//DTD X ...