luogu 3466 对顶堆
显然答案是将一段区间全部转化成了其中位数
这样的话,需要维护一个数据结构支持查询当前所有数中位数
对顶堆
用两个堆
将 < 中位数的数放入大根堆
将 > 中位数的数放入小根堆
这样就会存在删除操作
删除的时候
由于无法快速删除
只需做个标记,标记该数被删除了一次
并且堆的实际大小也应该另外记录维护
在标记时需要更改相应的堆的大小与权值
答案就非常显然了
#include <bits/stdc++.h> using namespace std; #define gc getchar()
inline int read() {
int x = ; char c = gc;
while(c < '' || c > '') c = gc;
while(c >= '' && c <= '') x = x * + c - '', c = gc;
return x;
} #define Rep(i, a, b) for(int i = a; i <= b; i ++)
#define Fin(str) freopen(str, "r", stdin)
#define Fout(str) freopen(str, "w", stdout)
#define E return
#define LL long long const int N = 1e5 + ; int n, k;
int A[N], use[N * ]; priority_queue <int, vector<int>, less<int> > Big;
priority_queue <int, vector<int>, greater<int> > Small; int Size1, Size2;
LL Sum1, Sum2; void Update() {
while(Big.size() && use[Big.top()]) use[Big.top()] --, Big.pop();
while(Small.size() && use[Small.top()]) use[Small.top()] --, Small.pop();
} void Out(); void Add(int x) {
Update();
while(Size1 < (k + ) / && Small.size()) {
int num = Small.top();
Small.pop();
Size1 ++, Sum1 += num;
Size2 --, Sum2 -= num;
Big.push(num);
Update();
}
Update();
if(Size1 < (k + ) / ) {
Size1 ++, Sum1 += x, Big.push(x); return ;
}
Update();
int num = Big.top();
if(x < num) {
Small.push(num);
Big.pop();
Size2 ++, Sum2 += num;
Sum1 += (x - num);
Big.push(x);
} else {
Size2 ++, Sum2 += x, Small.push(x);
}
Update();
} void Del(int x) {
use[x] ++;
int top1 = Big.top();
if(x <= top1) Size1 --, Sum1 -= x;
else Size2 --, Sum2 -= x;
} LL Calc() {
Update();
LL mid = Big.top();
return 1ll * mid * Size1 - 1ll * Sum1 + 1ll * Sum2 - 1ll * mid * Size2;
} int main() {
n = read(), k = read();
Rep(i, , n) A[i] = read();
Rep(i, , k) Add(A[i]);
LL Answer = Calc();
int bef = ;
int flag = k, mid = Big.top();
Rep(i, k + , n) {
Del(A[++ bef]);
Add(A[i]);
LL Ans = Calc();
if(Ans < Answer) {
flag = i, mid = Big.top();
Answer = Ans;
}
}
cout << Answer << "\n";
Rep(i, , n) {
if(i <= flag && i >= flag - k + ) {
cout << mid << "\n";
} else cout << A[i] << "\n";
}
return ;
}
luogu 3466 对顶堆的更多相关文章
- 【Luogu P1168】【Luogu P1801&UVA 501】中位数&黑匣子(Black Box)——对顶堆相关
Luogu P1168 Luogu P1801 UVA 501(洛谷Remote Judge) 前置知识:堆.优先队列STL的使用 对顶堆 是一种在线维护第\(k\)小的算法. 其实就是开两个堆,一个 ...
- Luogu 3466 [POI2008]KLO-Building blocks
BZOJ 1112. 题意相当于在一个长度为$k$的区间内选择一个数$s$使$\sum_{i = 1}^{k}\left | a_i - s \right |$最小. 很显然是中位数. 然后只要写一个 ...
- hdu3282 链表或者对顶堆
维护序列的动态中位数 第一次用链表做题..感觉指针指来指去也挺麻烦的.. 本题链表解法就是用数组模拟出一个链表,然后离线输入所有数,排序,按照输入顺序在链表里删除元素,一次性删掉两个,然后中位数指针对 ...
- 【uoj#280】[UTR #2]题目难度提升 对顶堆+STL-set
题目描述 给出 $n$ 个数 $a_1,a_2,...,a_n$ ,将其排为序列 $\{p_i\}$ ,满足 $\{前\ i\ 个数的中位数\}$ 单调不降.求字典序最大的 $\{p_i\}$ . 其 ...
- hdu4261 Estimation[暴力dp+对顶堆]
https://vjudge.net/problem/HDU-4261 对于一个长2000的数列划分最多25个块,每块代价为块内每个数与块内中位数差的绝对值之和,求最小总代价. 套路化地,设$f[i] ...
- 【POJ 3784】 Running Median (对顶堆)
Running Median Description For this problem, you will write a program that reads in a sequence of 32 ...
- P1168 中位数(对顶堆)
题意:维护一个序列,两种操作 1.插入一个数 2.输出中位数(若长度为偶数,输出中间两个较小的那个) 对顶堆 维护一个小根堆,一个大根堆,大根堆存1--mid,小根堆存mid+1---n 这样堆顶必有 ...
- poj3784 Running Median[对顶堆]
由于我不会讲对顶堆,所以这里直接传上一个巨佬的学习笔记. 对顶堆其实还是很容易理解的,想这题的时候自己猜做法也能把没学过的对顶堆给想出来.后来了解,对顶堆主要还是动态的在线维护集合$K$大值.当然也可 ...
- 洛谷 - P1801 - 黑匣子 - 对顶堆
这道题是提高+省选-的难度,做出来的话对数据结构题目的理解会增加很多. 可以使用一种叫做对顶堆的东西,对顶堆是在线维护第n小的logn的算法.大概的思路是,假如我们要找的是第n小,我们就维护一个大小为 ...
随机推荐
- redis GEO的使用
一.概念 redis的GEO特性在Redis3.2版本发布,这个功能可以将用户给定的地理位置信息储存起来,并对这些信息进行操作. GEO常用语LBS(Location Based Service),基 ...
- Windows中的消息与消息队列
消息 在Windows中,消自由MSG结构体表示 typedef struct tagMSG { HWND hwnd; UINT message; WPARAM wParam; LPARAM lPar ...
- Alfred神器使用手册【转】
我曾经耗费巨大的精力,试图在计算机的使用效率上找到一条优化的捷径,一直以来都收效甚微.直到遇上 alfred,它强大的工作流机制,彻底解决了输入输出的痛点,极大的减少了程序之间的切换成本和重复按键成本 ...
- 【转载】C#中string类使用Substring方法截取字符串
在C#的字符串操作过程中,截取字符串是一种常见的字符串操作,可使用string类的Substring方法来完成字符串的截取操作,该方法支持设定截取的开始位置以及截取的字符串长度等参数,Substrin ...
- JavaScript的深浅复制
JavaScript的深浅复制 为什么有深复制.浅复制? JavaScript中有两种数据类型,基本数据类型如undefined.null.boolean.number.string,另一类是Obje ...
- 服务端php之文件上传
知识点 echo $_SERVER['PHP_SELF']; 自动获取当前文件的路劲(即提交地址为当前页面) 当一个表单有文件域(即文件上传)的时候,method(提交方式)要设置post,这样更加安 ...
- MySQL5.7.16安装及配置
一.下载 下载页面http://dev.mysql.com/downloads/mysql/ 选择系统平台后,点击download(根据系统选择64或32位) 二.配置 1.下载成功后,解压安装包到要 ...
- CRM, C4C和SAP Hybris的数据库层设计
SAP的product都是DB provider无关的. CRM大家都很熟悉了,application developer最多用Open SQL直接操作表. Netweaver里支持的DB provi ...
- 什么是SAP Graph
今年九月份刚刚过去的SAP TechEd Las Vegas会议上,SAP CTO Juergen Mueller向外界宣布了SAP一些持续进行的技术创新和改进,其中之一就是SAP Graph,大家可 ...
- mysql 压力测试工具sysbench
2.1 只读示例 ./bin/sysbench --test=/usr/share/sysbench/tests/include/oltp_legacy/oltp.lua --mysql-host=1 ...