显然答案是将一段区间全部转化成了其中位数
这样的话,需要维护一个数据结构支持查询当前所有数中位数
对顶堆
用两个堆
将 < 中位数的数放入大根堆
将 > 中位数的数放入小根堆
这样就会存在删除操作
删除的时候
由于无法快速删除
只需做个标记,标记该数被删除了一次
并且堆的实际大小也应该另外记录维护
在标记时需要更改相应的堆的大小与权值
答案就非常显然了

#include <bits/stdc++.h>

using namespace std;

#define gc getchar()
inline int read() {
int x = ; char c = gc;
while(c < '' || c > '') c = gc;
while(c >= '' && c <= '') x = x * + c - '', c = gc;
return x;
} #define Rep(i, a, b) for(int i = a; i <= b; i ++)
#define Fin(str) freopen(str, "r", stdin)
#define Fout(str) freopen(str, "w", stdout)
#define E return
#define LL long long const int N = 1e5 + ; int n, k;
int A[N], use[N * ]; priority_queue <int, vector<int>, less<int> > Big;
priority_queue <int, vector<int>, greater<int> > Small; int Size1, Size2;
LL Sum1, Sum2; void Update() {
while(Big.size() && use[Big.top()]) use[Big.top()] --, Big.pop();
while(Small.size() && use[Small.top()]) use[Small.top()] --, Small.pop();
} void Out(); void Add(int x) {
Update();
while(Size1 < (k + ) / && Small.size()) {
int num = Small.top();
Small.pop();
Size1 ++, Sum1 += num;
Size2 --, Sum2 -= num;
Big.push(num);
Update();
}
Update();
if(Size1 < (k + ) / ) {
Size1 ++, Sum1 += x, Big.push(x); return ;
}
Update();
int num = Big.top();
if(x < num) {
Small.push(num);
Big.pop();
Size2 ++, Sum2 += num;
Sum1 += (x - num);
Big.push(x);
} else {
Size2 ++, Sum2 += x, Small.push(x);
}
Update();
} void Del(int x) {
use[x] ++;
int top1 = Big.top();
if(x <= top1) Size1 --, Sum1 -= x;
else Size2 --, Sum2 -= x;
} LL Calc() {
Update();
LL mid = Big.top();
return 1ll * mid * Size1 - 1ll * Sum1 + 1ll * Sum2 - 1ll * mid * Size2;
} int main() {
n = read(), k = read();
Rep(i, , n) A[i] = read();
Rep(i, , k) Add(A[i]);
LL Answer = Calc();
int bef = ;
int flag = k, mid = Big.top();
Rep(i, k + , n) {
Del(A[++ bef]);
Add(A[i]);
LL Ans = Calc();
if(Ans < Answer) {
flag = i, mid = Big.top();
Answer = Ans;
}
}
cout << Answer << "\n";
Rep(i, , n) {
if(i <= flag && i >= flag - k + ) {
cout << mid << "\n";
} else cout << A[i] << "\n";
}
return ;
}

luogu 3466 对顶堆的更多相关文章

  1. 【Luogu P1168】【Luogu P1801&UVA 501】中位数&黑匣子(Black Box)——对顶堆相关

    Luogu P1168 Luogu P1801 UVA 501(洛谷Remote Judge) 前置知识:堆.优先队列STL的使用 对顶堆 是一种在线维护第\(k\)小的算法. 其实就是开两个堆,一个 ...

  2. Luogu 3466 [POI2008]KLO-Building blocks

    BZOJ 1112. 题意相当于在一个长度为$k$的区间内选择一个数$s$使$\sum_{i = 1}^{k}\left | a_i - s \right |$最小. 很显然是中位数. 然后只要写一个 ...

  3. hdu3282 链表或者对顶堆

    维护序列的动态中位数 第一次用链表做题..感觉指针指来指去也挺麻烦的.. 本题链表解法就是用数组模拟出一个链表,然后离线输入所有数,排序,按照输入顺序在链表里删除元素,一次性删掉两个,然后中位数指针对 ...

  4. 【uoj#280】[UTR #2]题目难度提升 对顶堆+STL-set

    题目描述 给出 $n$ 个数 $a_1,a_2,...,a_n$ ,将其排为序列 $\{p_i\}$ ,满足 $\{前\ i\ 个数的中位数\}$ 单调不降.求字典序最大的 $\{p_i\}$ . 其 ...

  5. hdu4261 Estimation[暴力dp+对顶堆]

    https://vjudge.net/problem/HDU-4261 对于一个长2000的数列划分最多25个块,每块代价为块内每个数与块内中位数差的绝对值之和,求最小总代价. 套路化地,设$f[i] ...

  6. 【POJ 3784】 Running Median (对顶堆)

    Running Median Description For this problem, you will write a program that reads in a sequence of 32 ...

  7. P1168 中位数(对顶堆)

    题意:维护一个序列,两种操作 1.插入一个数 2.输出中位数(若长度为偶数,输出中间两个较小的那个) 对顶堆 维护一个小根堆,一个大根堆,大根堆存1--mid,小根堆存mid+1---n 这样堆顶必有 ...

  8. poj3784 Running Median[对顶堆]

    由于我不会讲对顶堆,所以这里直接传上一个巨佬的学习笔记. 对顶堆其实还是很容易理解的,想这题的时候自己猜做法也能把没学过的对顶堆给想出来.后来了解,对顶堆主要还是动态的在线维护集合$K$大值.当然也可 ...

  9. 洛谷 - P1801 - 黑匣子 - 对顶堆

    这道题是提高+省选-的难度,做出来的话对数据结构题目的理解会增加很多. 可以使用一种叫做对顶堆的东西,对顶堆是在线维护第n小的logn的算法.大概的思路是,假如我们要找的是第n小,我们就维护一个大小为 ...

随机推荐

  1. redis GEO的使用

    一.概念 redis的GEO特性在Redis3.2版本发布,这个功能可以将用户给定的地理位置信息储存起来,并对这些信息进行操作. GEO常用语LBS(Location Based Service),基 ...

  2. Windows中的消息与消息队列

    消息 在Windows中,消自由MSG结构体表示 typedef struct tagMSG { HWND hwnd; UINT message; WPARAM wParam; LPARAM lPar ...

  3. Alfred神器使用手册【转】

    我曾经耗费巨大的精力,试图在计算机的使用效率上找到一条优化的捷径,一直以来都收效甚微.直到遇上 alfred,它强大的工作流机制,彻底解决了输入输出的痛点,极大的减少了程序之间的切换成本和重复按键成本 ...

  4. 【转载】C#中string类使用Substring方法截取字符串

    在C#的字符串操作过程中,截取字符串是一种常见的字符串操作,可使用string类的Substring方法来完成字符串的截取操作,该方法支持设定截取的开始位置以及截取的字符串长度等参数,Substrin ...

  5. JavaScript的深浅复制

    JavaScript的深浅复制 为什么有深复制.浅复制? JavaScript中有两种数据类型,基本数据类型如undefined.null.boolean.number.string,另一类是Obje ...

  6. 服务端php之文件上传

    知识点 echo $_SERVER['PHP_SELF']; 自动获取当前文件的路劲(即提交地址为当前页面) 当一个表单有文件域(即文件上传)的时候,method(提交方式)要设置post,这样更加安 ...

  7. MySQL5.7.16安装及配置

    一.下载 下载页面http://dev.mysql.com/downloads/mysql/ 选择系统平台后,点击download(根据系统选择64或32位) 二.配置 1.下载成功后,解压安装包到要 ...

  8. CRM, C4C和SAP Hybris的数据库层设计

    SAP的product都是DB provider无关的. CRM大家都很熟悉了,application developer最多用Open SQL直接操作表. Netweaver里支持的DB provi ...

  9. 什么是SAP Graph

    今年九月份刚刚过去的SAP TechEd Las Vegas会议上,SAP CTO Juergen Mueller向外界宣布了SAP一些持续进行的技术创新和改进,其中之一就是SAP Graph,大家可 ...

  10. mysql 压力测试工具sysbench

    2.1 只读示例 ./bin/sysbench --test=/usr/share/sysbench/tests/include/oltp_legacy/oltp.lua --mysql-host=1 ...