说起来,这题好像也不难……

先考虑 F1 怎么做。

既然别的方法都不行不如试试\(f_{i,j}\) 表示在刚刚准备开始涂 \([i,j]\) 中最小编号的颜色之前,整个区间是同色的,且最后能做到 \([i,j]\) 变成要求的颜色,且所有连续颜色段要么完全在 \([i,j]\) 内,要么完全在 \([i,j]\) 外的方案数。(有点绕,好好理解一下)

那么先找到区间 \([i,j]\) 中的最小值 \(c\),下一步染色的区间 \([l,r]\) 一定要满足 \(i\le l\le r\le j\) 且包括 \(p_c\),其中 \(p_c\) 是 \(c\) 出现的位置。

由于染色后,\([l,r]\) 内同色且与不在 \([l,r]\) 内的异色,那么整个带子变成了四块。(图片来源:官方题解)

这是因为,\(p_c\) 永远不能被重新染色,就把两边分开了;\([l,r]\) 内和 \([l,r]\) 外的已经不同色,后面也不可能变得同色。

那么这四部分可以单独处理。

就有转移方程:\(f_{i,j}=\sum\limits_{l=i}^{p_c}\sum\limits_{r=p_c}^jf_{i,l-1}f_{l,p_c-1}f_{p_c+1,r}f_{r+1,j}\)。这里由于一些边界原因,不妨设 \(f_{i+1,i}=1\)。

这是一个 \(O(n^4)\) 做法(在 F1 中 \(n=m\))。优化的话,发现 \(l\) 和 \(r\) 在转移中独立。可以重写:\(f_{i,j}=(\sum\limits_{l=i}^{p_c}f_{i,l-1}f_{l,p_c-1})(\sum\limits_{r=p_c}^jf_{p_c+1,r}f_{r+1,j})\)

时间复杂度 \(O(n^3)\)。还有个大概 \(\frac{1}{6}\) 的常数。

接下来看看 F2。

首先这个 \(m\) 太大了,无论如何都不能直接区间 DP。

找找性质:

性质 1:如果两个方格某个时刻开始不同色,那么它们会一直不同色。反过来,如果两个方格最后同色,那么它们始终同色。

所以,不妨把连续一段相等的压成一个,不影响答案。

性质 2:把 \(c_i\ne c_{i+1}\) 的 \(i\) 叫做转折点。那么一次染色最多增加两个转折点。

所以,压缩后如果 \(m>2n\),这一定是不可能做到的,直接输出 \(0\)。

那么接下来 \(m\le 2n\),基本上可以按上面的方法来做。不过要稍微修改一下。

比如考虑序列 2,1,2,答案明显是 \(0\)。但是我们上面的做法会用 1 把两边分开单独考虑。

为什么会错呢?因为此时两边不独立。

其实解决方法也很简单,每次判一下是不是序列中所有 \(c\) 都在这个区间中。如果不是的话,给这个区间染色后不可能做到里面是 \(c\),外面也是 \(c\)。

同时,此时这个区间也分成了不止四段。不过问题不大,前后四段还是通过上面的方法转移,中间几段是一定取满的,直接乘上去就好了。

时间复杂度 \(O(n^3+m)\),有个大概 \(\frac{4}{3}\) 的常数。在 CF 神机+ 6s 时限下完全不用怕。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int,int> PII;
const int maxn=1111,mod=998244353;
#define MP make_pair
#define PB push_back
#define lson o<<1,l,mid
#define rson o<<1|1,mid+1,r
#define FOR(i,a,b) for(int i=(a);i<=(b);i++)
#define ROF(i,a,b) for(int i=(a);i>=(b);i--)
#define MEM(x,v) memset(x,v,sizeof(x))
inline ll read(){
char ch=getchar();ll x=0,f=0;
while(ch<'0' || ch>'9') f|=ch=='-',ch=getchar();
while(ch>='0' && ch<='9') x=x*10+ch-'0',ch=getchar();
return f?-x:x;
}
int n,m,m_,a[1111111],lft[maxn],rig[maxn],f[maxn][maxn];
int main(){
n=read();m_=read();
while(m_--){
int x=read();
if(x!=a[m]) a[++m]=x;
}
if(m>2*n) return puts("0"),0;
MEM(lft,0x3f);
FOR(i,1,m) lft[a[i]]=min(lft[a[i]],i),rig[a[i]]=max(rig[a[i]],i);
FOR(i,1,m) if(lft[a[i]]==i && rig[a[i]]==i) f[i][i]=1;
FOR(i,0,m) f[i+1][i]=1;
FOR(l,2,m) FOR(i,1,m-l+1){
int j=i+l-1,mn=i;
FOR(k,i+1,j) if(a[k]<a[mn]) mn=k;
int x=lft[a[mn]],y=rig[a[mn]],s1=0,s2=0,pre=0;
if(x<i || y>j) continue;
FOR(k,i,x) s1=(s1+1ll*f[i][k-1]*f[k][x-1])%mod;
FOR(k,y,j) s2=(s2+1ll*f[y+1][k]*f[k+1][j])%mod;
f[i][j]=1ll*s1*s2%mod;
FOR(k,i,j) if(a[k]==a[mn]){
if(pre) f[i][j]=1ll*f[i][j]*f[pre+1][k-1]%mod;
pre=k;
}
}
printf("%d\n",f[1][m]);
}

CF1178F Short/Long Colorful Strip(DP)的更多相关文章

  1. LightOJ 1033 Generating Palindromes(dp)

    LightOJ 1033  Generating Palindromes(dp) 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid= ...

  2. lightOJ 1047 Neighbor House (DP)

    lightOJ 1047   Neighbor House (DP) 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=87730# ...

  3. UVA11125 - Arrange Some Marbles(dp)

    UVA11125 - Arrange Some Marbles(dp) option=com_onlinejudge&Itemid=8&category=24&page=sho ...

  4. 【POJ 3071】 Football(DP)

    [POJ 3071] Football(DP) Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4350   Accepted ...

  5. 初探动态规划(DP)

    学习qzz的命名,来写一篇关于动态规划(dp)的入门博客. 动态规划应该算是一个入门oier的坑,动态规划的抽象即神奇之处,让很多萌新 萌比. 写这篇博客的目标,就是想要用一些容易理解的方式,讲解入门 ...

  6. Tour(dp)

    Tour(dp) 给定平面上n(n<=1000)个点的坐标(按照x递增的顺序),各点x坐标不同,且均为正整数.请设计一条路线,从最左边的点出发,走到最右边的点后再返回,要求除了最左点和最右点之外 ...

  7. 2017百度之星资格赛 1003:度度熊与邪恶大魔王(DP)

    .navbar-nav > li.active > a { background-image: none; background-color: #058; } .navbar-invers ...

  8. Leetcode之动态规划(DP)专题-详解983. 最低票价(Minimum Cost For Tickets)

    Leetcode之动态规划(DP)专题-983. 最低票价(Minimum Cost For Tickets) 在一个火车旅行很受欢迎的国度,你提前一年计划了一些火车旅行.在接下来的一年里,你要旅行的 ...

  9. 最长公共子序列长度(dp)

    /// 求两个字符串的最大公共子序列长度,最长公共子序列则并不要求连续,但要求前后顺序(dp) #include <bits/stdc++.h> using namespace std; ...

随机推荐

  1. thymeleaf入门

    controller层添加实体 html <!DOCTYPE html> <html xmlns:th="http://www.thymeleaf.org"> ...

  2. 使用 jQuery.AutoComplete 让文本框自动完成

    直接贴代码了. @section headSection { <script type="text/javascript"> $(document).ready(fun ...

  3. Python 学习 第15篇:日期和时间

    datetime模块中包含五种基本类型:date.time.datetime.timedelta和tzinfo,tz是time zone的缩写,tzinfo用于表示时区信息. 一,date类型 dat ...

  4. 一款常用的截图工具(能够截gif动图)

    这款工具用来截程序的演示GIF图片,灰常方便. 直接上Github地址: https://github.com/NickeManarin/ScreenToGif

  5. 三维网格精简算法(Quadric Error Metrics)附源码(转载)

    转载:  https://www.cnblogs.com/shushen/p/5311828.html 在计算机图形应用中,为了尽可能真实呈现虚拟物体,往往需要高精度的三维模型.然而,模型的复杂性直接 ...

  6. Winform中对DevExpress的RadopGroup的Description、Value、Tag、Text的理解与使用

    场景 Winform中实现读取xml配置文件并动态配置ZedGraph的RadioGroup的选项: https://blog.csdn.net/BADAO_LIUMANG_QIZHI/article ...

  7. Flask笔记:session

    session与cookie: cookie是一项浏览器的技术,而不是服务器的技术,服务器端是无法直接操作cookie的,只能通过返回Response响应告诉浏览器怎么操作cookie.而sessio ...

  8. python3之二年级上数学练习题生成

    二年级上数学练习题生成 作为一个家长不容易啊 1 #coding:utf-8 2 import random 3 #小学二年级上数学练习(100以内加减乘) 4 #生成的题数 5 count = 50 ...

  9. java基本程序设计结构总结

    学习一门语言:(1)掌握它的表现形式(2)这些语言什么应用. 1.1关键字 1.关键字是被赋予了特殊含义的单词. 2.关键字特点:关键字所有字母都小写. 3.类名的每一个单词开头必须大写. 1.2标识 ...

  10. 关于项目中js原型的使用

    在一个项目中为了减少全局变量的使用及模块化的开发我们使用的构造函数加原型的开发模式 var App = function(){ //管理构造函数的属性 this.name = 'jack' } //页 ...