LOJ 3159: 「NOI2019」弹跳
题目传送门:LOJ #3159。
题意简述:
二维平面上有 \(n\) 个整点,给定每个整点的坐标 \((x_i,y_i)\)。
有 \(m\) 种边,第 \(i\) 种边从 \(p_i\) 号点连向满足 \(l_i\le x_j\le r_i\) 和 \(d_i\le y_j\le u_i\) 的点 \(j\),即一个矩形范围内的所有点。
求 \(1\) 号点到其它每个点的最短路长度。
题解:
考虑 Dijkstra 算法求最短路的过程:
一开始只有起点的距离为 \(0\),而其它点距离为无限大。
每次取出一个距离最短的没被更新过的点,用它更新它能到达的所有未被更新过的点的距离,并将其标记为已被更新。
重复这个过程直到所有点均被更新。
上述过程一般使用单调队列来维护距离最短的点。
而在此题中,一次更新时可能加入的点会有很多很多,不能每次将其一并加入。
可以考虑加入一条边而非点,加入的这条边就代表了这条边连向的所有点的距离。
类似地,每次取出距离最短的边,此时这条边代表的矩形内部的所有点均可以进行更新,因为只会去更新未被更新过的点,所以更新完这些点的距离后,可以把这些点全部删除。
上述方法是最短路中包含“一对多”,“多对多”的边时的处理办法。还有一种方法是使用数据结构模型优化建边,但是一般不会比这种方法来得优。
至于具体如何维护矩形删点操作,删点时可以暴力一个个删除,因为每个点只会被删除一次,问题在于如何快速找到要删除的点。
这里我使用线段树套平衡树(std::set
)维护,外层线段树处理横坐标上的区间,内层平衡树可以快速访问目标点将其删除。
下面是代码,时间复杂度为 \(\mathcal{O}(n\log^2n+m\log m)\):
#include <cstdio>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#define mp std::make_pair
typedef std::pair<int, int> pii;
typedef std::multiset<pii>::iterator iter;
const int MN = 70005, MM = 150005;
const int MS = 1 << 18 | 7;
int N, M, W, H, yp[MN], vis[MN], dis[MN];
int h[MN], nxt[MM], et[MM], eL[MM], eR[MM], eD[MM], eU[MM];
std::multiset<pii> st[MS];
std::priority_queue<pii> pq;
void Ins(int i, int l, int r, int x, int id) {
st[i].insert(mp(yp[id], id));
if (l == r) return ;
int mid = (l + r) >> 1;
if (x <= mid) Ins(i << 1, l, mid, x, id);
else Ins(i << 1 | 1, mid + 1, r, x, id);
}
void Del(int i, int l, int r, int id, int d) {
if (r < eL[id] || eR[id] < l) return ;
if (eL[id] <= l && r <= eR[id]) {
iter it = st[i].lower_bound(mp(eD[id], 0)), tmp;
while (it != st[i].end() && it -> first <= eU[id]) {
int u = it -> second;
if (!vis[u]) {
vis[u] = 1, dis[u] = d;
for (int j = h[u]; j; j = nxt[j])
pq.push(mp(-d - et[j], j));
}
tmp = it, ++it, st[i].erase(tmp);
}
return ;
}
int mid = (l + r) >> 1;
Del(i << 1, l, mid, id, d);
Del(i << 1 | 1, mid + 1, r, id, d);
}
int main() {
freopen("jump.in", "r", stdin);
freopen("jump.out", "w", stdout);
scanf("%d%d%d%d", &N, &M, &W, &H);
for (int i = 1, x; i <= N; ++i) {
scanf("%d%d", &x, &yp[i]);
Ins(1, 1, W, x, i);
}
for (int i = 1, p; i <= M; ++i) {
scanf("%d%d%d%d%d%d", &p, &et[i], &eL[i], &eR[i], &eD[i], &eU[i]);
nxt[i] = h[p], h[p] = i;
}
dis[1] = 0, vis[1] = 1;
for (int i = h[1]; i; i = nxt[i])
pq.push(mp(-et[i], i));
while (!pq.empty()) {
pii ed = pq.top(); pq.pop();
int dis = -ed.first, id = ed.second;
Del(1, 1, W, id, dis);
}
for (int i = 2; i <= N; ++i) printf("%d\n", dis[i]);
return 0;
}
LOJ 3159: 「NOI2019」弹跳的更多相关文章
- LOJ 3158: 「NOI2019」序列
题目传送门:LOJ #3158. 题意简述: 给定两个长度为 \(n\) 的正整数序列 \(a,b\),要求在每个序列中都选中 \(K\) 个下标,并且要保证同时在两个序列中都被选中的下标至少有 \( ...
- LOJ 3160: 「NOI2019」斗主地
题目传送门:LOJ #3160. 简要题意: 有一个长度为 \(n\) 的序列 \(a\),初始时 \(a_i=i\) 或 \(a_i=i^2\),这取决于 \(\mathrm{type}\) 的值. ...
- LOJ 3156: 「NOI2019」回家路线
题目传送门:LOJ #3156. 题意简述: 有一张 \(n\) 个点 \(m\) 条边的有向图,边有两个权值 \(p_i\) 和 \(q_i\)(\(p_i<q_i\))表示若 \(p_i\) ...
- 「NOI2019」弹跳(KD树)
题意:w×h网格中有n个点,m条边.每条边可以从p点花费t时间到一个矩形中的任意点,求1号点到每个点的最少时间. \(1<=w,h<=n<=70000,1<=m<=150 ...
- @loj - 3157@「NOI2019」机器人
目录 @description@ @solution@ @accepted code@ @details@ @description@ 小 R 喜欢研究机器人. 最近,小 R 新研制出了两种机器人,分 ...
- loj3161「NOI2019」I 君的探险(随机化,整体二分)
loj3161「NOI2019」I 君的探险(随机化,整体二分) loj Luogu 题解时间 对于 $ N \le 500 $ 的点,毫无疑问可以直接 $ O(n^2) $ 暴力询问解决. 考虑看起 ...
- Loj #2192. 「SHOI2014」概率充电器
Loj #2192. 「SHOI2014」概率充电器 题目描述 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品--概率充电器: 「采用全新纳米级加工技术,实现元件与导线能否通电完 ...
- Loj #3096. 「SNOI2019」数论
Loj #3096. 「SNOI2019」数论 题目描述 给出正整数 \(P, Q, T\),大小为 \(n\) 的整数集 \(A\) 和大小为 \(m\) 的整数集 \(B\),请你求出: \[ \ ...
- Loj #3093. 「BJOI2019」光线
Loj #3093. 「BJOI2019」光线 题目描述 当一束光打到一层玻璃上时,有一定比例的光会穿过这层玻璃,一定比例的光会被反射回去,剩下的光被玻璃吸收. 设对于任意 \(x\),有 \(x\t ...
随机推荐
- Linux性能优化实战学习笔记:第二十三讲
一.索引节点和目录 1.索引节点 2.目录项 3.关系 为了帮助你理解目录项.索引节点以及文件数据的关系,我画了一张示意图,你可以对照这张图,来回忆刚刚讲过的内容,把只知识和细节串联起来 4.Slab ...
- [LeetCode] 508. Most Frequent Subtree Sum 出现频率最高的子树和
Given the root of a tree, you are asked to find the most frequent subtree sum. The subtree sum of a ...
- 一张思维导图辅助你深入了解 Vue | Vue-Router | Vuex 源码架构
1.前言 本文内容讲解的内容:一张思维导图辅助你深入了解 Vue | Vue-Router | Vuex 源码架构. 项目地址:https://github.com/biaochenxuying/vu ...
- gcc/g++ -O 优化选项说明
查查gcc手册就知道了,每个编译选项都控制着不同的优化选项 下面从网络上copy过来的,真要用到这些还是推荐查阅手册 -O设置一共有五种:-O0.-O1.-O2.-O3和-Os. 除了-O0以外,每一 ...
- git本地代码管理
git真的是一个代码管理神器,帮助我们在代码开发过程中更好的进行版本管理,如果没有版本管理器,就要不停的复制粘贴,一个项目开发下来,一堆的版本文件夹,最后都不知道是哪个版本了. 用git之后,每一次的 ...
- Phaser也可以实现countdownLatch的功能
/** * 可用用phaser模拟countDownLatch * awaitAdvance方法:如果传入的参数和当前的phase相等,线程就阻塞住等待phase的值增加:否则就立即返回 */ pub ...
- VUE方法
1.$event 变量 $event 变量用于访问原生DOM事件. <!DOCTYPE html> <html lang="zh"> <head> ...
- Sitecore 创建并实施自定义营销分类
在Sitecore体验平台中,分类法是一种组织项目的方式.您可以应用分类标签来识别广告系列,引荐渠道以及有关营销活动的其他信息.这使您可以识别和跟踪各种营销活动之间的关系,从而更深入地了解广告系列的效 ...
- java获取调用当前方法的方法名和行数
java获取调用当前方法的方法名和行数String className = Thread.currentThread().getStackTrace()[2].getClassName();//调用的 ...
- WPF 精修篇 动态资源
原文:WPF 精修篇 动态资源 动态资源 使用 DynamicResource 关键字 静态 就是 StaticResource 原则上是 能用静态就用静态 动态会让前台界面压力很大~ 动态资源引用 ...