聚合可以让我们极其方便的实现对数据的统计、分析。例如:

  • 什么品牌的手机最受欢迎?

  • 这些手机的平均价格、最高价格、最低价格?

  • 这些手机每月的销售情况如何?

实现这些统计功能的比数据库的sql要方便的多,而且查询速度非常快,可以实现实时搜索效果。

 1.基本概念

Elasticsearch中的聚合,包含多种类型,最常用的两种,一个叫,一个叫度量

(1)桶

桶的作用,是按照某种方式对数据进行分组,每一组数据在ES中称为一个,例如我们根据国籍对人划分,可以得到中国桶英国桶日本桶……或者我们按照年龄段对人进行划分:0~10,10~20,20~30,30~40等。

Elasticsearch中提供的划分桶的方式有很多:

  • Date Histogram Aggregation:根据日期阶梯分组,例如给定阶梯为周,会自动每周分为一组

  • Histogram Aggregation:根据数值阶梯分组,与日期类似

  • Terms Aggregation:根据词条内容分组,词条内容完全匹配的为一组

  • Range Aggregation:数值和日期的范围分组,指定开始和结束,然后按段分组

  • ……

bucket aggregations 只负责对数据进行分组,并不进行计算,因此往往bucket中往往会嵌套另一种聚合:metrics aggregations即度量

(2)度量(metrics)

分组完成以后,我们一般会对组中的数据进行聚合运算,例如求平均值、最大、最小、求和等,这些在ES中称为度量

比较常用的一些度量聚合方式:

  • Avg Aggregation:求平均值

  • Max Aggregation:求最大值

  • Min Aggregation:求最小值

  • Percentiles Aggregation:求百分比

  • Stats Aggregation:同时返回avg、max、min、sum、count等

  • Sum Aggregation:求和

  • Top hits Aggregation:求前几

  • Value Count Aggregation:求总数

  • ……

为了测试聚合,我们先批量导入一些数据

创建索引及映射:

PUT /cars
{
"settings": {
"number_of_shards": 1,
"number_of_replicas": 0
},
"mappings": {
"transactions": {
"properties": {
"color": {
"type": "keyword"
},
"make": {
"type": "keyword"
}
}
}
}
}

利用postman工具:

响应结果:

使用 Elasticsearch Bulk API /_bulk批量导入数据

POST /cars/transactions/_bulk

{ "index": {}}
{ "price" : 10000, "color" : "red", "make" : "honda", "sold" : "2014-10-28" }
{ "index": {}}
{ "price" : 20000, "color" : "red", "make" : "honda", "sold" : "2014-11-05" }
{ "index": {}}
{ "price" : 30000, "color" : "green", "make" : "ford", "sold" : "2014-05-18" }
{ "index": {}}
{ "price" : 15000, "color" : "blue", "make" : "toyota", "sold" : "2014-07-02" }
{ "index": {}}
{ "price" : 12000, "color" : "green", "make" : "toyota", "sold" : "2014-08-19" }
{ "index": {}}
{ "price" : 20000, "color" : "red", "make" : "honda", "sold" : "2014-11-05" }
{ "index": {}}
{ "price" : 80000, "color" : "red", "make" : "bmw", "sold" : "2014-01-01" }
{ "index": {}}
{ "price" : 25000, "color" : "blue", "make" : "ford", "sold" : "2014-02-12" }

 

注意:必须有换行符。

响应结果:

注意:在ES中,需要进行聚合、排序、过滤的字段其处理方式比较特殊,因此不能被分词。这里我们将color和make这两个文字类型的字段设置为keyword类型,这个类型不会被分词,将来就可以参与聚合

2.聚合为桶

首先,我们按照 汽车的颜色color来划分

GET /cars/_search
{
"size" : 0,
"aggs" : {
"popular_colors" : {
"terms" : {
"field" : "color"
}
}
}
}
  • size: 查询条数,这里设置为0,因为我们不关心搜索到的数据,只关心聚合结果,提高效率

  • aggs:声明这是一个聚合查询,是aggregations的缩写

    • popular_colors:给这次聚合起一个名字,任意。

      • terms:划分桶的方式,这里是根据词条划分

        • field:划分桶的字段

响应结果:

  • hits:查询结果为空,因为我们设置了size为0

  • aggregations:聚合的结果

  • popular_colors:我们定义的聚合名称

  • buckets:查找到的桶,每个不同的color字段值都会形成一个桶

    • key:这个桶对应的color字段的值

    • doc_count:这个桶中的文档数量

通过聚合的结果我们发现,目前红色的小车比较畅销!

3.桶内度量

前面的例子告诉我们每个桶里面的文档数量,这很有用。 但通常,我们的应用需要提供更复杂的文档度量。 例如,每种颜色汽车的平均价格是多少?

因此,我们需要告诉Elasticsearch使用哪个字段使用何种度量方式进行运算,这些信息要嵌套在内,度量的运算会基于内的文档进行

现在,我们为刚刚的聚合结果添加 求价格平均值的度量:

GET /cars/_search
{
"size" : 0,
"aggs" : {
"popular_colors" : {
"terms" : {
"field" : "color"
},
"aggs":{
"avg_price": {
"avg": {
"field": "price"
}
}
}
}
}
}

postman工具使用:

  • aggs:我们在上一个aggs(popular_colors)中添加新的aggs。可见度量也是一个聚合

  • avg_price:聚合的名称

  • avg:度量的类型,这里是求平均值

  • field:度量运算的字段

响应结果:

4.桶内嵌套桶

刚刚的案例中,我们在桶内嵌套度量运算。事实上桶不仅可以嵌套运算, 还可以再嵌套其它桶。也就是说在每个分组中,再分更多组。

比如:我们想统计每种颜色的汽车中,分别属于哪个制造商,按照make字段再进行分桶

GET /cars/_search
{
"size" : 0,
"aggs" : {
"popular_colors" : {
"terms" : {
"field" : "color"
},
"aggs":{
"avg_price": {
"avg": {
"field": "price"
}
},
"maker":{
"terms":{
"field":"make"
}
}
}
}
}
}
  • 原来的color桶和avg计算我们不变

  • maker:在嵌套的aggs下新添一个桶,叫做maker

  • terms:桶的划分类型依然是词条

  • filed:这里根据make字段进行划分

postman中响应结果:

{
"took": 16,
"timed_out": false,
"_shards": {
"total": 1,
"successful": 1,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 8,
"max_score": 0.0,
"hits": []
},
"aggregations": {
"popular_colors": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": "red",
"doc_count": 4,
"maker": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": "honda",
"doc_count": 3
},
{
"key": "bmw",
"doc_count": 1
}
]
},
"avg_price": {
"value": 32500.0
}
},
{
"key": "blue",
"doc_count": 2,
"maker": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": "ford",
"doc_count": 1
},
{
"key": "toyota",
"doc_count": 1
}
]
},
"avg_price": {
"value": 20000.0
}
},
{
"key": "green",
"doc_count": 2,
"maker": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": "ford",
"doc_count": 1
},
{
"key": "toyota",
"doc_count": 1
}
]
},
"avg_price": {
"value": 21000.0
}
}
]
}
}
}
  • 我们可以看到,新的聚合maker被嵌套在原来每一个color的桶中。

  • 每个颜色下面都根据 make字段进行了分组

  • 我们能读取到的信息:

    • 红色车共有4辆

    • 红色车的平均售价是 $32,500 美元。

    • 其中3辆是 Honda 本田制造,1辆是 BMW 宝马制造。

030 ElasticSearch----全文检索技术05---基础知识详解03-聚合的更多相关文章

  1. Cisco路由技术基础知识详解

    第一部分 请写出568A的线序(接触网络第一天就应该会的,只要你掐过,想都能想出来) .网卡MAC地址长度是(  )个二进制位(16进制与2进制的换算关系,只是换种方式问,不用你拿笔去算) A.12  ...

  2. RabbitMQ,Apache的ActiveMQ,阿里RocketMQ,Kafka,ZeroMQ,MetaMQ,Redis也可实现消息队列,RabbitMQ的应用场景以及基本原理介绍,RabbitMQ基础知识详解,RabbitMQ布曙

    消息队列及常见消息队列介绍 2017-10-10 09:35操作系统/客户端/人脸识别 一.消息队列(MQ)概述 消息队列(Message Queue),是分布式系统中重要的组件,其通用的使用场景可以 ...

  3. RabbitMQ基础知识详解

    什么是MQ? MQ全称为Message Queue, 消息队列(MQ)是一种应用程序对应用程序的通信方法.MQ是消费-生产者模型的一个典型的代表,一端往消息队列中不断写入消息,而另一端则可以读取队列中 ...

  4. Python基础知识详解 从入门到精通(七)类与对象

    本篇主要是介绍python,内容可先看目录其他基础知识详解,欢迎查看本人的其他文章Python基础知识详解 从入门到精通(一)介绍Python基础知识详解 从入门到精通(二)基础Python基础知识详 ...

  5. 直播一:H.264编码基础知识详解

    一.编码基础概念 1.为什么要进行视频编码? 视频是由一帧帧图像组成,就如常见的gif图片,如果打开一张gif图片,可以发现里面是由很多张图片组成.一般视频为了不让观众感觉到卡顿,一秒钟至少需要16帧 ...

  6. 第157天:canvas基础知识详解

    目录 一.canvas简介 1.1 什么是canvas?(了解) 1.2 canvas主要应用的领域(了解) 二.canvas绘图基础 2.0 sublime配置canvas插件(推荐) 2.1 Ca ...

  7. redis基础知识详解

    一.redis基础知识 1.Redis是什么Redis是一个开源的key-value存储系统. 和Memcached类似,它支持存储的value类型相对更多,包括string(字符串).list(链表 ...

  8. 【干货】用大白话聊聊JavaSE — ArrayList 深入剖析和Java基础知识详解(二)

    在上一节中,我们简单阐述了Java的一些基础知识,比如多态,接口的实现等. 然后,演示了ArrayList的几个基本方法. ArrayList是一个集合框架,它的底层其实就是一个数组,这一点,官方文档 ...

  9. Thrift入门初探(2)--thrift基础知识详解

    昨天总结了thrift的安装和入门实例,Thrift入门初探--thrift安装及java入门实例,今天开始总结一下thrift的相关基础知识. Thrift使用一种中间语言IDL,来进行接口的定义, ...

  10. Java网络编程一:基础知识详解

    网络基础知识 1.OSI分层模型和TCP/IP分层模型的对应关系 这里对于7层模型不展开来讲,只选择跟这次系列主题相关的知识点介绍. 2.七层模型与协议的对应关系 网络层   ------------ ...

随机推荐

  1. 基于vue+springboot+docker网站搭建【二】搞定服务器

    搞定服务器 双11在阿里云用家人的身份证注册账号,买了两台打折的服务器.2核4G一台3年799块:1核2G一台3年229块.机器配置如下图. 1.买的时候注意相同地区的相同可用区.比如我两台机器都选择 ...

  2. ./configure & make & make install 知其所以然

    最近一直在类unix系统上(Ubuntu和Mac OS)上调研第三方的一些开源库,要涉及到开源库的编译安装工作,接触最多的就是./configure & make & make ins ...

  3. Global variable in ABAP function group

    Function group is loaded into runtime memory by the FIRST call of a function module inside this func ...

  4. 黑白之间的FastFlux

    DNS请求 通常我们对一个域名进行DNS请求,尤其是A记录,一般在一段时间内是不变的,其结果的异同也就是可能因地域而得到不同的结果.当然这个结果可能是个集合,也可能是一个IP地址.因为我们要考虑到CD ...

  5. VSCode在Ubuntu下快捷键和Windows下不一致的解决办法

    Windows下切换前一次和后一次光标位置,用的快捷键是Alt+<-和Alt+->.很遗憾,Ubuntu下并不是这个快捷键.不清楚为什么VSCode不提供统一的快捷键,但对于我来说,我很想 ...

  6. 关于Jackson中JsonNode的取值asText()和textValue()区别

    在 比较高版本的Jackson 中, 包名为 com.fasterxml.jackson String jsonText="{\"name\":\"张三\&qu ...

  7. 【Spring Cloud】Spring Cloud之自定义@SpringCloudProfile注解实现@Profile注解的功能

    一.为什么会想到定义@SpringCloudProfile这样的注解 首页提一下@Profile注解:它主要用与Spring Boot多环境配置中,指定某个类只在指定环境中生效,比如swagger的配 ...

  8. centos7.2下安装python3.6.5

    yum groupinstall 'Development Tools' 出现错误 系统 centos 7.3 使用命令 yum groupinstall 'Development Tools' 出现 ...

  9. 详解数据库引擎与SQL语句增删改查(非常详细,带例)

    数据库系统(DBMS): 专门负责数据管理的工具.增加数据.创建索引.建立索引之间的关联关系.更新索引...... 连接器:PHP要访问MySQL,可以通过API访问,也可以通过PHP的驱动,而那个驱 ...

  10. flask实战-个人博客-数据库-生成虚拟数据 --

    3.生成虚拟数据 为了方便编写程序前台和后台功能,我们在创建数据库模型后就编写生成虚拟数据的函数. 1)管理员 用于生成虚拟管理员信息的fake_admin()函数如下所示: personalBlog ...