1、题意:一个裸的最小割

2、分析:直接转成对偶图最短路就好了,水爆了!(雾)

#include <queue>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
using namespace std;
#define M 2000010
#define inf 1014748364

inline int read(){
    char ch = getchar(); int x = 0, f = 1;
    while(ch < '0' || ch > '9'){
        if(ch == '-') f = -1;
        ch = getchar();
    }
    while('0' <= ch && ch <= '9'){
        x = x * 10 + ch - '0';
        ch = getchar();
    }
    return x * f;
} 

namespace dijkstra{
    struct Edge{
        int u, v, w, next;
    } G[M];
    int head[M], tot;

    struct Node{
        int d, u;

        inline bool operator < (const Node& rhs) const{
            return d > rhs.d;
        }
    };
    priority_queue<Node> Q;
    int d[M];
    bool done[M];

    inline void init(){
        memset(head, -1, sizeof(head));
        tot = 0;
    }

    inline void add(int u, int v, int w){
    //  printf("%d %d %d\n", u, v, w);
        G[++ tot] = (Edge){u, v, w, head[u]};
        head[u] = tot;
    }

    inline int get_dis(int s, int t, int n){
        memset(done, 0, sizeof(done));
        for(int i = 0; i <= n; i ++) d[i] = inf;
        d[s] = 0;
        Q.push((Node){0, s});
        while(!Q.empty()){
            Node u = Q.top(); Q.pop();
            int x = u.u;
            if(done[x]) continue;
            done[x] = 1;
            for(int i = head[x]; i != -1; i = G[i].next){
                Edge& e = G[i];
                if(d[e.v] > d[x] + e.w){
                    d[e.v] = d[x] + e.w;
                    Q.push((Node){d[e.v], e.v});
                }
            }
        }
        return d[t];
    }
}

using namespace dijkstra;

int n;

inline int num(int i, int j){
    if(j < 1 || i > n) return 0;
    if(i < 1 || j > n) return n * n + 1;
    return (i - 1) * n + j;
}

int main(){
    n = read();
    init();
    for(int i = 0; i <= n; i ++){
        for(int j = 1; j <= n; j ++){
            int x = read();
            add(num(i + 1, j), num(i, j), x);
        }
    }
    for(int i = 1; i <= n; i ++){
        for(int j = 0; j <= n; j ++){
            int x = read();
            add(num(i, j), num(i, j + 1), x);
        }
    }
    for(int i = 0; i <= n; i ++){
        for(int j = 1; j <= n; j ++){
            int x = read();
            add(num(i, j), num(i + 1, j), x);
        }
    }
    for(int i = 1; i <= n; i ++){
        for(int j = 0; j <= n; j ++){
            int x = read();
            add(num(i, j + 1), num(i, j), x);
        }
    }
    printf("%d\n", get_dis(0, n * n + 1, n * n + 1));
    return 0;
}

BZOJ2007——[Noi2010]海拔的更多相关文章

  1. Bzoj2007 [Noi2010]海拔(平面图最短路)

    2007: [Noi2010]海拔 Time Limit: 20 Sec  Memory Limit: 552 MBSubmit: 2742  Solved: 1318[Submit][Status] ...

  2. [BZOJ2007][NOI2010]海拔(对偶图最短路)

    首先确定所有点的海拔非0即1,问题转化成裸的平面图最小割问题,进而转化成对偶图最短路(同BZOJ1002). 这题的边是有向的,所以所有边顺时针旋转90度即可. 如下图(S和T的位置是反的). #in ...

  3. Bzoj2007 [Noi2010]海拔

    Time Limit: 20 Sec  Memory Limit: 552 MB Submit: 2380  Solved: 1130 Description YT市是一个规划良好的城市,城市被东西向 ...

  4. bzoj2007 NOI2010 海拔(对偶图)

    80分(最小割)思路 先考虑如果没有题目中东南角为\(1\)那个限制的话会怎样. 那么只要让每个点的海拔都是\(0\)就行了.这样不论怎样走,最后的答案都是0. 然后再考虑那个东南角为\(1\)的限制 ...

  5. BZOJ2007 [Noi2010]海拔 【平面图最小割转对偶图最短路】

    题目链接 BZOJ2007 题解 这是裸题啊,,要是考试真的遇到就好了 明显是最小割,而且是有来回两个方向 那么原图所有向右的边转为对偶图向下的边 向左的边转为向上 向下转为向左 向上转为向右 然后跑 ...

  6. bzoj千题计划129:bzoj2007: [Noi2010]海拔

    http://www.lydsy.com/JudgeOnline/problem.php?id=2007 1.所有点的高度一定在0~1之间, 如果有一个点的高度超过了1,那么必定会有人先上坡,再下坡, ...

  7. BZOJ2007 NOI2010 海拔 平面图转对偶图 最小割

    题面太长啦,请诸位自行品尝—>海拔 分析: 这是我见过算法比较明显的最小割题目了,很明显对于某一条简单路径,海拔只会有一次变换. 而且我们要最终使变换海拔的边权值和最小. 我们发现变换海拔相当于 ...

  8. 【BZOJ2007】[Noi2010]海拔 对偶图最短路

    [BZOJ2007][Noi2010]海拔 Description YT市是一个规划良好的城市,城市被东西向和南北向的主干道划分为n×n个区域.简单起见,可以将YT市看作 一个正方形,每一个区域也可看 ...

  9. BZOJ 2007: [Noi2010]海拔

    2007: [Noi2010]海拔 Time Limit: 20 Sec  Memory Limit: 552 MBSubmit: 2410  Solved: 1142[Submit][Status] ...

随机推荐

  1. 第7章 权限管理(2)_文件特殊权限(SUID、SGID、SBIT)

    2. 文件特殊权限(主要用来临时提升命令执行者或其组身份) 2.1 SetUID (1)SetUID的功能 ①只有可以执行的二进制程序才能设定SUID权限.用来临时提升执行程序(或某条命令)的用户身份 ...

  2. Mysql数据库主从心得整理

    管理mysql主从有2年多了,管理过200多组mysql主从,几乎涉及到各个版本的主从,本博文属于总结性的,有一部分是摘自网络,大部分是根据自己管理的心得和经验所写,整理了一下,分享给各位同行,希望对 ...

  3. 3357: [Usaco2004]等差数列

    3357: [Usaco2004]等差数列 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 321  Solved: 153[Submit][Statu ...

  4. tensorflow学习笔记五:mnist实例--卷积神经网络(CNN)

    mnist的卷积神经网络例子和上一篇博文中的神经网络例子大部分是相同的.但是CNN层数要多一些,网络模型需要自己来构建. 程序比较复杂,我就分成几个部分来叙述. 首先,下载并加载数据: import ...

  5. 软件工程(FZU2015)赛季得分榜,第一回合

    目录 第一回合 第二回合 第三回合 第四回合 第五回合 第6回合 第7回合 第8回合 第9回合 第10回合 第11回合 积分规则 积分制: 作业为10分制,练习为3分制:alpha30分: 团队项目分 ...

  6. Java构造和解析Json数据

    BaseResult wyComany = propertyService.getWyCompanyById(CommunityInfos.getWyCompany());//这里返回的是json字符 ...

  7. 【51Nod 1616】【算法马拉松 19B】最小集合

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1616 这道题主要是查询一个数是不是原有集合的一个子集的所有数的gcd. ...

  8. 教你一招:解决u盘插入计算机时提示格式化,如何恢复u盘中的文件

    1.插入U盘时,计算机提示格式化 看到这里,到底是格不格呢?别怕,随便你了. 2.查看U盘属性,发现都为零 怎么办呢?u盘上面有很多重要文件啊!别急,继续往下看. 3.解决办法 (1)下载DiskGe ...

  9. 【BZOJ-2669】局部极小值 状压DP + 容斥原理

    2669: [cqoi2012]局部极小值 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 561  Solved: 293[Submit][Status ...

  10. 鼠标拖动在picturebox上画圆时

    注意MouseDown MouseMove  MouseUp三个事件: MouseMove事件中要实现实时绘制和下次绘制时自动清除重绘 需要: pictureBox1.Invalidate(); pi ...