[JLOI2013]删除物品
只要每一次将优先级最高的上面的物品移走,就一定能保证是最优解。
所以我们只要想办法简化这个模拟移物品的过程,看完了题解后,发现可以这么想,我们可以把两个栈头碰头的挨在一起,然后设一个指针代表两个栈的分界线,这样移动物品就变成了移动指针,而每一次移动的步数,就是指针和这个物品之间的距离。
开始的时候这个序列每一位都是1,然后如果删除了物品 i,就将 a[i] = 0,这样移动距离就是区间和了,然后用线段树维护即可。
#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<vector>
#include<stack>
#include<queue>
using namespace std;
#define enter printf("\n")
#define space printf(" ")
#define Mem(a) memset(a, 0, sizeof(a))
typedef long long ll;
typedef double db;
const int INF = 0x3f3f3f3f;
const int eps = 1e-;
const int maxn = 1e5 + ;
inline ll read()
{
ll ans = ;
char ch = getchar(), last = ' ';
while(!isdigit(ch)) {last = ch; ch = getchar();}
while(isdigit(ch))
{
ans = ans * + ch - ''; ch = getchar();
}
if(last == '-') ans = -ans;
return ans;
}
inline void write(ll x)
{
if(x < ) x = -x, putchar('-');
if(x >= ) write(x / );
putchar(x % + '');
} int n1, n2, N;
ll a[maxn], t[maxn];
int pos[maxn]; int l[maxn << ], r[maxn << ], sum[maxn << ];
void build(int L, int R, int now)
{
l[now] = L; r[now] = R;
if(L == R) {sum[now] = ; return;}
int mid = (L + R) >> ;
build(L, mid, now << );
build(mid + , R, now << | );
sum[now] = sum[now << ] + sum[now << | ];
}
void update(int id, int now)
{
if(l[now] == r[now]) {sum[now] = ; return;}
int mid = (l[now] + r[now]) >> ;
if(id <= mid) update(id, now << );
else update(id, now << | );
sum[now] = sum[now << ] + sum[now << | ];
}
int query(int L, int R, int now)
{
if(l[now] == L && r[now] == R) return sum[now];
int mid = (l[now] + r[now]) >> ;
if(R <= mid) return query(L, R, now << );
else if(L > mid) return query(L, R, now << | );
else return query(L , mid, now << ) + query(mid + , R, now << | );
} ll ans = ; int main()
{
n1 = read(); n2 = read();
N = n1 + n2;
for(int i = n1; i > ; --i) a[i] = read();
for(int i = n1 + ; i <= N; ++i) a[i] = read();
for(int i = ; i <= N; ++i) t[i] = a[i];
sort(t + , t + N + ); //离散化优先级
for(int i = ; i <= N; ++i) a[i] = lower_bound(t + , t + N + , a[i]) - t;
for(int i = ; i <= N; ++i) pos[a[i]] = i; //记录每一个优先级所在位置
build(, N, );
int x = pos[N] > n1 ? n1 + : n1; //指针刚开始可以在n1处,也可以在n2处,需判断
for(int i = N; i > ; --i)
{
if(pos[i] < x) ans += query(pos[i] + , x, );
else if(pos[i] > x) ans += query(x, pos[i] - , );
//一定要有if(pos[i] > x),因为刚开始可能优先级最大的在栈顶,不需移动,否则会RE
x = pos[i]; //移动指针
update(x, );
}
write(ans); enter;
return ;
}
[JLOI2013]删除物品的更多相关文章
- [bzoj3192][JLOI2013]删除物品(树状数组)
3192: [JLOI2013]删除物品 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 872 Solved: 508[Submit][Status ...
- 洛谷 P3253 [JLOI2013]删除物品 解题报告
P3253 [JLOI2013]删除物品 题目描述 箱子再分配问题需要解决如下问题: (1)一共有\(N\)个物品,堆成\(M\)堆. (2)所有物品都是一样的,但是它们有不同的优先级. (3)你只能 ...
- 3192: [JLOI2013]删除物品
3192: [JLOI2013]删除物品 Time Limit: 10 Sec Memory Limit: 128 MB Submit: 1366 Solved: 794 [Submit][Statu ...
- [bzoj3192][JLOI2013]删除物品_树状数组_栈
删除物品 bzoj-3192 JLOI-2013 题目大意:给你n个物品,分成2堆.所有的物品有不同的优先级.我只可以将一堆中的堆顶移动到另一个堆的堆顶.而如果当前物品是全局所有物品中优先级最高的,我 ...
- bzoj 3192: [JLOI2013]删除物品
Description 箱子再分配问题需要解决如下问题: (1)一共有N个物品,堆成M堆. (2)所有物品都是一样的,但是它们有不同的优先级. (3)你只能够移动某堆中位于顶端的物品. ( ...
- BZOJ3192:[JLOI2013]删除物品——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=3192 箱子再分配问题需要解决如下问题: (1)一共有N个物品,堆成M堆. (2)所有物品都是一样的 ...
- BZOJ3192: [JLOI2013]删除物品(splay)
Description 箱子再分配问题需要解决如下问题: (1)一共有N个物品,堆成M堆. (2)所有物品都是一样的,但是它们有不同的优先级. (3)你只能够移动某堆中位于顶端的物品. ( ...
- [JLOI2013]删除物品 树状数组
当时考试时间剩下太短了然后就挂掉了..其实是个简单的数据结构. 话说一看最小还以为是动规呢.. 将两堆头对头排.比如样例就是 541|273 因为是必须有优先级次序,依次拿的话,看优先级大小相邻的两个 ...
- BZOJ 3192: [JLOI2013]删除物品(树状数组)
题面: https://www.lydsy.com/JudgeOnline/problem.php?id=3192 题解: 首先每次一定是来回移动直到最大的到顶上. 所以我们可以将第两个堆的堆顶接起来 ...
随机推荐
- vs2017 未能完成操作。不支持此接口
打开vs2017开发者命令提示符 切换至安装下的指定目录 执行下面的命令就可以了 需要注意的是一定要用vs2017的开发人员命令提示符 别用cmd gacutil -i Microsoft.V ...
- 【JVM】5、JVM内存管理机制
转自:http://blog.csdn.net/lengyuhong/article/details/5953544 近期看了看Java内存泄露的一些案例,跟原来的几个哥们讨论了一下,深入研究发现JV ...
- HTML 代码复用实践
前言 通常我们所做的一些页面,我们可以从设计图里面看出有一些地方是相同的.例如:头部,底部,侧边栏等等.如果是制作静态页面的同学,对于这些重复的部分只能够通过复制粘贴到新的页面来,如果页面的数量上去了 ...
- 活字格Web应用平台学习笔记4 - 添加记录
今天继续学习活字格基础教程,目标是创建一个页面,增加记录. 开始之前,系统会自动把上一次的工程文件加载进来. 这是做好后的样子. 我点添加员工的超链接: 先后加了2条员工的信息进来. 不错,设计界面是 ...
- Sql 中存储过程详细案例
转自:http://www.cnblogs.com/yank/p/4235609.html 概念 存储过程(Stored Procedure):已预编译为一个可执行过程的一个或多个SQL语句. 创建存 ...
- [Android] 旋转照片/图片
今天比较闲(是任务做完了,不是偷懒),就多更新几篇,补一下之前做的东西. 原文地址请保留http://www.cnblogs.com/rossoneri/p/3995306.html 推荐阅读: An ...
- [WPF 容易忽视的细节] —— Exception in WPF's Converter
前言: 在WPF中,Converter是我们经常要用到的一个工具,因为XAML上绑定的数据不一定是我们需要的数据. 问题: 在Converter中抛出一个异常导致程序崩溃,而且是在对未捕获异常进行集中 ...
- Django组件扩展 总结
1. Form组件扩展: 验证用户输入 obj = Form(reuest,POST,request.FILES) if obj.is_valid(): obj.clean_data else: ob ...
- 回归JavaScript基础(十)
主题:创建对象 原型模式 JavaScript中的每个对象都有一个prototype属性(原型属性),这个属性是一个指针,指向一个对象,而这个对象可以由一些属性和方法组成.被指向的对象,可以是多个对象 ...
- 从零自学Java-3.在程序中存储和修改变量信息
1.创建变量: 2.使用不同类型的变量: 3.在变量中存储值: 4.在数学表达式中使用变量: 5.把一个变量的值赋给另一个变量: 6.递增/递减变量的值. 程序Variable:使用不同类型的变量并赋 ...