英文详细版参考:https://www.cnblogs.com/jins-note/p/10243716.html

Dataset API是TensorFlow 1.3版本中引入的一个新的模块,主要服务于数据读取,构建输入数据的pipeline。

此前,在TensorFlow中读取数据一般有两种方法:

相Dataset API同时支持从内存和硬盘的读取,相比之前的两种方法在语法上更加简洁易懂。此外,如果想要用到TensorFlow新出的Eager模式,就必须要使用Dataset API来读取数据。

本文就来为大家详细地介绍一下Dataset API的使用方法(包括在非Eager模式和Eager模式下两种情况)。

Dataset API的导入

在TensorFlow 1.3中,Dataset API是放在contrib包中的:

tf.contrib.data.Dataset

而在TensorFlow 1.4中,Dataset API已经从contrib包中移除,变成了核心API的一员:

tf.data.Dataset

下面的示例代码将以TensorFlow 1.4版本为例,如果使用TensorFlow 1.3的话,需要进行简单的修改(即加上contrib)。

基本概念:Dataset与Iterator

让我们从基础的类来了解Dataset API。参考Google官方给出的Dataset API中的类图:

在初学时,我们只需要关注两个最重要的基础类:Dataset和Iterator

Dataset可以看作是相同类型“元素”的有序列表。在实际使用时,单个“元素”可以是向量,也可以是字符串、图片,甚至是tuple或者dict。

先以最简单的,Dataset的每一个元素是一个数字为例

import tensorflow as tf
import numpy as np dataset = tf.data.Dataset.from_tensor_slices(np.array([1.0, 2.0, 3.0, 4.0, 5.0]))

这样,我们就创建了一个dataset,这个dataset中含有5个元素,分别是1.0, 2.0, 3.0, 4.0, 5.0。

如何将这个dataset中的元素取出呢?方法是从Dataset中示例化一个Iterator,然后对Iterator进行迭代。

在非Eager模式下,读取上述dataset中元素的方法为:

iterator = dataset.make_one_shot_iterator()
one_element = iterator.get_next()
with tf.Session() as sess:
for i in range(5):
print(sess.run(one_element))

对应的输出结果应该就是从1.0到5.0。语句iterator = dataset.make_one_shot_iterator()从dataset中实例化了一个Iterator,这个Iterator是一个“one shot iterator”,即只能从头到尾读取一次。one_element = iterator.get_next()表示从iterator里取出一个元素。由于这是非Eager模式,所以one_element只是一个Tensor,并不是一个实际的值。调用sess.run(one_element)后,才能真正地取出一个值。

如果一个dataset中元素被读取完了,再尝试sess.run(one_element)的话,就会抛出tf.errors.OutOfRangeError异常,这个行为与使用队列方式读取数据的行为是一致的。在实际程序中,可以在外界捕捉这个异常以判断数据是否读取完,请参考下面的代码:

dataset = tf.data.Dataset.from_tensor_slices(np.array([1.0, 2.0, 3.0, 4.0, 5.0]))
iterator = dataset.make_one_shot_iterator()
one_element = iterator.get_next()
with tf.Session() as sess:
try:
while True:
print(sess.run(one_element))
except tf.errors.OutOfRangeError:
print("end!")

在Eager模式中,创建Iterator的方式有所不同。是通过tfe.Iterator(dataset)的形式直接创建Iterator并迭代。迭代时可以直接取出值,不需要使用sess.run():

import tensorflow.contrib.eager as tfe
tfe.enable_eager_execution() dataset = tf.data.Dataset.from_tensor_slices(np.array([1.0, 2.0, 3.0, 4.0, 5.0])) for one_element in tfe.Iterator(dataset):
print(one_element)

从内存中创建更复杂的Dataset

之前我们用tf.data.Dataset.from_tensor_slices创建了一个最简单的Dataset:

dataset = tf.data.Dataset.from_tensor_slices(np.array([1.0, 2.0, 3.0, 4.0, 5.0]))

其实,tf.data.Dataset.from_tensor_slices的功能不止如此,它的真正作用是切分传入Tensor的第一个维度,生成相应的dataset。

例如:

dataset = tf.data.Dataset.from_tensor_slices(np.random.uniform(size=(5, 2)))

传入的数值是一个矩阵,它的形状为(5, 2),tf.data.Dataset.from_tensor_slices就会切分它形状上的第一个维度,最后生成的dataset中一个含有5个元素,每个元素的形状是(2, ),即每个元素是矩阵的一行。

在实际使用中,我们可能还希望Dataset中的每个元素具有更复杂的形式,如每个元素是一个Python中的元组,或是Python中的词典。例如,在图像识别问题中,一个元素可以是{"image": image_tensor, "label": label_tensor}的形式,这样处理起来更方便。

tf.data.Dataset.from_tensor_slices同样支持创建这种dataset,例如我们可以让每一个元素是一个词典:

dataset = tf.data.Dataset.from_tensor_slices(
{
"a": np.array([1.0, 2.0, 3.0, 4.0, 5.0]),
"b": np.random.uniform(size=(5, 2))
}
)

这时函数会分别切分"a"中的数值以及"b"中的数值,最终dataset中的一个元素就是类似于{"a": 1.0, "b": [0.9, 0.1]}的形式。

利用tf.data.Dataset.from_tensor_slices创建每个元素是一个tuple的dataset也是可以的:

dataset = tf.data.Dataset.from_tensor_slices(
(np.array([1.0, 2.0, 3.0, 4.0, 5.0]), np.random.uniform(size=(5, 2)))
)

对Dataset中的元素做变换:Transformation

Dataset支持一类特殊的操作:Transformation。一个Dataset通过Transformation变成一个新的Dataset。通常我们可以通过Transformation完成数据变换,打乱,组成batch,生成epoch等一系列操作。

常用的Transformation有:

  • map
  • batch
  • shuffle
  • repeat

下面就分别进行介绍。

(1)map

map接收一个函数,Dataset中的每个元素都会被当作这个函数的输入,并将函数返回值作为新的Dataset,如我们可以对dataset中每个元素的值加1:

dataset = tf.data.Dataset.from_tensor_slices(np.array([1.0, 2.0, 3.0, 4.0, 5.0]))
dataset = dataset.map(lambda x: x + 1) # 2.0, 3.0, 4.0, 5.0, 6.0

(2)batch

batch就是将多个元素组合成batch,如下面的程序将dataset中的每个元素组成了大小为32的batch:

dataset = dataset.batch(32)

(3)shuffle

shuffle的功能为打乱dataset中的元素,它有一个参数buffersize,表示打乱时使用的buffer的大小:

dataset = dataset.shuffle(buffer_size=10000)

(4)repeat

repeat的功能就是将整个序列重复多次,主要用来处理机器学习中的epoch,假设原先的数据是一个epoch,使用repeat(5)就可以将之变成5个epoch:

dataset = dataset.repeat(5)

如果直接调用repeat()的话,生成的序列就会无限重复下去,没有结束,因此也不会抛出tf.errors.OutOfRangeError异常:

dataset = dataset.repeat()

例子:读入磁盘图片与对应label

讲到这里,我们可以来考虑一个简单,但同时也非常常用的例子:读入磁盘中的图片和图片相应的label,并将其打乱,组成batch_size=32的训练样本。在训练时重复10个epoch。

对应的程序为(从官方示例程序修改而来):

# 函数的功能时将filename对应的图片文件读进来,并缩放到统一的大小
def _parse_function(filename, label):
image_string = tf.read_file(filename)
image_decoded = tf.image.decode_image(image_string)
image_resized = tf.image.resize_images(image_decoded, [28, 28])
return image_resized, label # 图片文件的列表
filenames = tf.constant(["/var/data/image1.jpg", "/var/data/image2.jpg", ...])
# label[i]就是图片filenames[i]的label
labels = tf.constant([0, 37, ...]) # 此时dataset中的一个元素是(filename, label)
dataset = tf.data.Dataset.from_tensor_slices((filenames, labels)) # 此时dataset中的一个元素是(image_resized, label)
dataset = dataset.map(_parse_function) # 此时dataset中的一个元素是(image_resized_batch, label_batch)
dataset = dataset.shuffle(buffersize=1000).batch(32).repeat(10)

在这个过程中,dataset经历三次转变:

  • 运行dataset = tf.data.Dataset.from_tensor_slices((filenames, labels))后,dataset的一个元素是(filename, label)。filename是图片的文件名,label是图片对应的标签。
  • 之后通过map,将filename对应的图片读入,并缩放为28x28的大小。此时dataset中的一个元素是(image_resized, label)
  • 最后,dataset.shuffle(buffersize=1000).batch(32).repeat(10)的功能是:在每个epoch内将图片打乱组成大小为32的batch,并重复10次。最终,dataset中的一个元素是(image_resized_batch, label_batch),image_resized_batch的形状为(32, 28, 28, 3),而label_batch的形状为(32, ),接下来我们就可以用这两个Tensor来建立模型了。

Dataset的其它创建方法....

除了tf.data.Dataset.from_tensor_slices外,目前Dataset API还提供了另外三种创建Dataset的方式:

  • tf.data.TextLineDataset():这个函数的输入是一个文件的列表,输出是一个dataset。dataset中的每一个元素就对应了文件中的一行。可以使用这个函数来读入CSV文件。
  • tf.data.FixedLengthRecordDataset():这个函数的输入是一个文件的列表和一个record_bytes,之后dataset的每一个元素就是文件中固定字节数record_bytes的内容。通常用来读取以二进制形式保存的文件,如CIFAR10数据集就是这种形式。
  • tf.data.TFRecordDataset():顾名思义,这个函数是用来读TFRecord文件的,dataset中的每一个元素就是一个TFExample。

它们的详细使用方法可以参阅文档:Module: tf.data

更多类型的Iterator....

在非Eager模式下,最简单的创建Iterator的方法就是通过dataset.make_one_shot_iterator()来创建一个one shot iterator。除了这种one shot iterator外,还有三个更复杂的Iterator,即:

  • initializable iterator
  • reinitializable iterator
  • feedable iterator

initializable iterator必须要在使用前通过sess.run()来初始化。使用initializable iterator,可以将placeholder代入Iterator中,这可以方便我们通过参数快速定义新的Iterator。一个简单的initializable iterator使用示例:

limit = tf.placeholder(dtype=tf.int32, shape=[])

dataset = tf.data.Dataset.from_tensor_slices(tf.range(start=0, limit=limit))

iterator = dataset.make_initializable_iterator()
next_element = iterator.get_next() with tf.Session() as sess:
sess.run(iterator.initializer, feed_dict={limit: 10})
for i in range(10):
value = sess.run(next_element)
assert i == value

此时的limit相当于一个“参数”,它规定了Dataset中数的“上限”。

initializable iterator还有一个功能:读入较大的数组。

在使用tf.data.Dataset.from_tensor_slices(array)时,实际上发生的事情是将array作为一个tf.constants保存到了计算图中。当array很大时,会导致计算图变得很大,给传输、保存带来不便。这时,我们可以用一个placeholder取代这里的array,并使用initializable iterator,只在需要时将array传进去,这样就可以避免把大数组保存在图里,示例代码为(来自官方例程):

# 从硬盘中读入两个Numpy数组
with np.load("/var/data/training_data.npy") as data:
features = data["features"]
labels = data["labels"] features_placeholder = tf.placeholder(features.dtype, features.shape)
labels_placeholder = tf.placeholder(labels.dtype, labels.shape) dataset = tf.data.Dataset.from_tensor_slices((features_placeholder, labels_placeholder))
iterator = dataset.make_initializable_iterator()
sess.run(iterator.initializer, feed_dict={features_placeholder: features,
labels_placeholder: labels})

reinitializable iterator和feedable iterator相比initializable iterator更复杂,也更加少用,如果想要了解它们的功能,可以参阅官方介绍,这里就不再赘述了。

总结

本文主要介绍了Dataset API的基本架构:Dataset类和Iterator类,以及它们的基础使用方法。

在非Eager模式下,Dataset中读出的一个元素一般对应一个batch的Tensor,我们可以使用这个Tensor在计算图中构建模型。

在Eager模式下,Dataset建立Iterator的方式有所不同,此时通过读出的数据就是含有值的Tensor,方便调试。

作为兼容两种模式的Dataset API,在今后应该会成为TensorFlow读取数据的主流方式。关于Dataset API的进一步介绍,可以参阅下面的资料:

TensorFlow数据读取方式:Dataset API的更多相关文章

  1. 详解Tensorflow数据读取有三种方式(next_batch)

    转自:https://blog.csdn.net/lujiandong1/article/details/53376802 Tensorflow数据读取有三种方式: Preloaded data: 预 ...

  2. TensorFlow数据读取

    TensorFlow高效读取数据的方法 TF Boys (TensorFlow Boys ) 养成记(二): TensorFlow 数据读取 Tensorflow从文件读取数据 极客学院-数据读取 十 ...

  3. geotrellis使用(二)geotrellis-chatta-demo以及geotrellis框架数据读取方式初探

    在上篇博客(geotrellis使用初探)中简单介绍了geotrellis-chatta-demo的大致工作流程,但是有一个重要的问题就是此demo如何调取数据进行瓦片切割分析处理等并未说明,经过几天 ...

  4. XML数据读取方式性能比较(一)

    原文:XML数据读取方式性能比较(一) 几个月来,疑被SOA,一直在和XML操作打交道,SQL差不多又忘光了.现在已经知道,至少有四种常用人XML数据操作方式(好像Java差不多),不过还没有实际比较 ...

  5. 十图详解tensorflow数据读取机制(附代码)转知乎

    十图详解tensorflow数据读取机制(附代码) - 何之源的文章 - 知乎 https://zhuanlan.zhihu.com/p/27238630

  6. Tensorflow数据读取的方式

    深度学习既然是基于数据的方法,先不管多抽象,那总归是有读取数据的方法的吧,这里的数据应该是一个统称,包含我们讲的数据集和变量tensor. tf读取数据一共有3种方法: 供给数据(Feeding): ...

  7. TF Boys (TensorFlow Boys ) 养成记(二): TensorFlow 数据读取

    TensorFlow 的 How-Tos,讲解了这么几点: 1. 变量:创建,初始化,保存,加载,共享: 2. TensorFlow 的可视化学习,(r0.12版本后,加入了Embedding Vis ...

  8. Tensorflow数据读取机制

    展示如何将数据输入到计算图中 Dataset可以看作是相同类型"元素"的有序列表,在实际使用时,单个元素可以是向量.字符串.图片甚至是tuple或dict. 数据集对象实例化: d ...

  9. 十图详解TensorFlow数据读取机制(附代码)

    在学习TensorFlow的过程中,有很多小伙伴反映读取数据这一块很难理解.确实这一块官方的教程比较简略,网上也找不到什么合适的学习材料.今天这篇文章就以图片的形式,用最简单的语言,为大家详细解释一下 ...

随机推荐

  1. 剑指offer八之跳台阶

    一.题目 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 二.思路 a.如果两种跳法,1阶或者2阶,那么假定第一次跳的是一阶,那么剩下的是n-1个台阶,跳法 ...

  2. C# 多线程学习系列三之CLR线程池系列之ThreadPool

    一.CLR线程池 1.进程和CLR的关系一个进程可以只包含一个CLR,也可以包含多个CLR2.CLR和AppDomain的关系一个CLR可以包含多个AppDomain3.CLR和线程池的关系一个CLR ...

  3. Stack Overflow 2016 最新架构探秘

    原文:http://nickcraver.com/blog/2016/02/17/stack-overflow-the-architecture-2016-edition/ 转载:http://www ...

  4. 用分布式缓存提升ASP.NET Core性能

    得益于纯净.轻量化并且跨平台支持的特性,ASP.NET Core作为热门Web应用开发框架,其高性能传输和负载均衡的支持已广受青睐.实际上,10-20台Web服务器还是轻松驾驭的.有了多服务器负载的支 ...

  5. php -- 数据库信息

    ----- 023-dbinfo.php ----- <!DOCTYPE html> <html> <head> <meta http-equiv=" ...

  6. 08 - JavaSE之IO流

    IO流 JAVA流式输入输出原理:可以想象成一根管道怼到文件上,另一端是我们程序,然后流的输入输出都是按照程序本身作为第一人称说明的.比如 input,对于我们程序来说就是有数据输入我们程序,outp ...

  7. MYSQL用户权限管理(Grant,Revoke)

    MySQL可以为不同的用户分配严格的.复杂的权限.这些操作大多都可以用SQL指令Grant(分配权限)和Revoke(回收权限)来实现. Grant可以把指定的权限分配给特定的用户,如果这个用户不存在 ...

  8. 【IT笔试面试题整理】寻找二叉树两节点的最近的公共祖先

    [试题描述] 求二叉树中任意两个节点的最近公共祖先也称为LCA问题(Lowest Common Ancestor). 二叉查找树 如果该二叉树是二叉查找树,那么求解LCA十分简单. 基本思想为:从树根 ...

  9. Spring 3.1新特性之二:@Enable*注解的源码,spring源码分析之定时任务Scheduled注解

    分析SpringBoot的自动化配置原理的时候,可以观察下这些@Enable*注解的源码,可以发现所有的注解都有一个@Import注解.@Import注解是用来导入配置类的,这也就是说这些自动开启的实 ...

  10. 代码统计工具cloc

    https://sourceforge.net/projects/cloc/files/cloc/v1.64/