题目大意:给定 \(N\) 个人围成一个圈,每隔 \(M\) 个人杀一个,求最后活着的人的编号。

题解:环会涉及模运算,所以先将 \(1 \rightarrow N\) 映射为 \(0 \rightarrow N-1\),且报数从 \(0\) 开始,即:报数到 \(m-1\) 的人会被杀掉。假设已知 \(N-1\) 人时剩下的人的编号为 \(x\),如何求得 \(N\) 个人时活着的人的编号是问题的关键。现在逆向考虑问题,即:游戏第一次杀人后的子问题和原问题之间的关系。假设第一次报数时,编号为 \(k-1\) 的人被杀,则第 \(k\) 个人到第 \(k-2\) 个人组成的新环恰好构成了一个 \(N-1\) 个人的子问题,且 \(k \rightarrow 0,k-2 \rightarrow n-2\)。可知,\(f[i]=(f[i-1]+k)\% i\),其中 \(k=m\% n\) 。因此,最后的递推公式为:\(f[i]=(f[i-1]+m)\% i,f[1]=0\)。

代码如下

#include <bits/stdc++.h>
using namespace std;
const int maxn=1e6+10; int n,m,f[maxn]; void solve(){
f[1]=0;
for(int i=2;i<=n;i++)f[i]=(f[i-1]+m)%i;
printf("%d\n",f[n]+1);
} int main(){
scanf("%d%d",&n,&m);
solve();
return 0;
}

【51nod1073】约瑟夫环1的更多相关文章

  1. Java实现约瑟夫环

    什么是约瑟夫环呢? 约瑟夫环是一个数学的应用问题:已知n个人(以编号1,2,3...n分别表示)围坐在一张圆桌周围.从编号为k的人开始报数,数到m的那个人出列;他的下一个人又从1开始报数,数到m的那个 ...

  2. poj 3517 约瑟夫环

    最简单的约瑟夫环,虽然感觉永远不会考约瑟夫环,但数学正好刷到这部分,跳过去的话很难过 直接粘别人分析了 约瑟夫问题: 用数学方法解的时候需要注意应当从0开始编号,因为取余会等到0解. 实质是一个递推, ...

  3. C++ 约瑟夫环

    约瑟夫环: 已知n个人(以编号1,2,3...n分别表示)围坐在一张圆桌周围.从编号为k的人开始报数,数到m的那个人出列:他的下一个人又从1开始报数,数到m的那个人又出列:依此规律重复下去,直到圆桌周 ...

  4. 用pl/sql游标实现约瑟夫环

    什么是约瑟夫环: 约瑟夫环(约瑟夫问题)是一个数学的应用问题:已知n个人(以编号1,2,3...n分别表示)围坐在一张圆桌周围.从编号为1的人开始报数,数到m的那个人出列:他的下一个人又从1开始报数, ...

  5. 51nod 1073 约瑟夫环

    题目链接 先说一下什么是约瑟夫环,转自:传送门 关于约瑟夫环问题,无论是用链表实现还是用数组实现都有一个共同点:要模拟整个游戏过程,不仅程序写起来比较烦,而且时间复杂度高达O(nm),当n,m非常大( ...

  6. 通过例子进阶学习C++(七)CMake项目通过模板库实现约瑟夫环

    本文是通过例子学习C++的第七篇,通过这个例子可以快速入门c++相关的语法. 1.问题描述 回顾一下约瑟夫环问题:n 个人围坐在一个圆桌周围,现在从第 s 个人开始报数,数到第 m 个人,让他出局:然 ...

  7. php解决约瑟夫环

    今天偶遇一道算法题 "约瑟夫环"是一个数学的应用问题:一群猴子排成一圈,按1,2,-,n依次编号.然后从第1只开始数,数到第m只,把它踢出圈,从它后面再开始数, 再数到第m只,在把 ...

  8. POJ-2886 Who Gets the Most Candies?---线段树+约瑟夫环

    题目链接: https://cn.vjudge.net/problem/POJ-2886 题目大意: N个人围成一圈第一个人跳出圈后会告诉你下一个谁跳出来跳出来的人(如果他手上拿的数为正数,从他左边数 ...

  9. "递归"实现"约瑟夫环","汉诺塔"

    一:约瑟夫环问题是由古罗马的史学家约瑟夫提出的,问题描述为:编号为1,2,-.n的n个人按顺时针方向围坐在一张圆桌周围,每个人持有一个密码(正整数),一开始任选一个正整数作为报数上限值m,从第一个人开 ...

随机推荐

  1. Exp1 逆向与bof基础

    20155332<网络对抗>Exp1 逆向与bof基础 1.实验目的 本次实践的对象是一个名为pwn1的linux可执行文件. 该程序正常执行流程是:main调用foo函数,foo函数会简 ...

  2. 阿里云代金券 - 双12疯了~~~ 4核8G 3M带宽只要1890元/3年

    阿里云双12大促简直疯了,4核8G 3M带宽只要1890元/3年,比双11疯狂多了,双11没有上车的赶快来买吧!!! 前去阿里云双12活动页面 截图如下: 从截图中可以看出,不仅4核8G降到了地板,1 ...

  3. 分布式事务的CAP理论 与BASE理论

    CAP理论 一个经典的分布式系统理论.CAP理论告诉我们:一个分布式系统不可能同时满足一致性(C:Consistency).可用性(A:Availability)和分区容错性(P:Partition ...

  4. stl源码剖析 详细学习笔记deque(2)

    //---------------------------15/3/13---------------------------- self&operator++() { ++cur; if(c ...

  5. B1015 德才论 (25 分)

    19/25 #include<bits/stdc++.h> using namespace std; /* 1.de>=H && cai>=H 2.de> ...

  6. 区块链--Bitcoin共识机制

    目录 中心化和去中心化 比特币共识机制 拜占庭将军共识机制 比特币成功解决了拜占庭问题 中心化和去中心化 中心化模式: 优点:效率高 缺点:中间层次太多(组织层次连接) 去中心化模式: 缺点:效率低 ...

  7. Daily Scrum NO.6

    会议概况 这两日又是由于编译deadline和数据库课程设计使得我们的进度进行缓慢.但是项目的进程仍然在可掌控的范围之内,时间虽然紧,但是应该最终能够实现Beta版本. 这次会议我们总结了之前5个正常 ...

  8. 审评(HelloWorld团队)

    炸弹人:我觉得炸弹人的构想很不错,很像以前玩的qq堂,不过上课时讲的不够深入,我没有找到项目的思路,项目的介绍也很粗糙,后面说的目标很大,希望你可以实现,我觉得越多的功能,就意味着越多的工作量,总的来 ...

  9. MySQL与Spring事务隔离级别

    https://zhuanlan.zhihu.com/p/27887568 能画第一张表,根据表描述.

  10. Linux命令(十七) 关机命令

    在 Linux 系统下一些常用的关机/重启命令有 shutdown.halt.reboot以及init,他们都可以达到重启系统的目的,但每个命令的内部工作过程不同. 一.使用 shutdown 关机或 ...