【bzoj2194】快速傅立叶之二 FFT
题意:给定序列a,b,求序列c,\(c(k)=\sum_{i=k}^{n-1}a(i)b(i-k)\)
Solution:
c(k)=\sum_{i=0}^{n-k-1}a(i+k)b(i)\\
设ar(i)=a(n-i-1)\\
c(k)=\sum_{i=0}^{n-k-1}ar(n-i-k-1)b(i)\\
可以看出这是个卷积的形式,直接裸套fft
\]
Code:
#include<bits/stdc++.h>
#define ll long long
#define Pi acos(-1.0)
using namespace std;
const int N=262144;
int n,len=1,tim,rtt[N];
struct cp{double x,y;}aa[N],bb[N];
cp operator + (cp a,cp b){return (cp){a.x+b.x,a.y+b.y};}
cp operator - (cp a,cp b){return (cp){a.x-b.x,a.y-b.y};}
cp operator * (cp a,cp b){return (cp){a.x*b.x-a.y*b.y,a.y*b.x+a.x*b.y};}
void FFT(cp *a,int flag){
for(int i=0;i<len;i++)
if(i<rtt[i]) swap(a[i],a[rtt[i]]);
for(int l=2;l<=len;l<<=1){
cp wn=(cp){cos(flag*2*Pi/l),sin(flag*2*Pi/l)};
for(int st=0;st<len;st+=l){
cp w=(cp){1,0};
for(int u=st;u<st+(l>>1);u++,w=w*wn){
cp x=a[u],y=w*a[u+(l>>1)];
a[u]=x+y,a[u+(l>>1)]=x-y;
}
}
}
}
int read(){
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=-f;ch=getchar();}
while(isdigit(ch)){x=x*10+ch-48;ch=getchar();}
return x*f;
}
int main(){
n=read();
for(int i=0;i<n;i++){
scanf("%lf",&aa[n-i-1].x);
scanf("%lf",&bb[i].x);
}
while(len<=(n<<1)) len<<=1,++tim;
for(int i=0;i<len;i++)
rtt[i]=(rtt[i>>1]>>1)|((i&1)<<(tim-1));
FFT(aa,1);FFT(bb,1);
for(int i=0;i<len;i++) aa[i]=aa[i]*bb[i];
FFT(aa,-1);for(int i=0;i<len;i++) aa[i].x/=len;
for(int i=0;i<n;i++)
printf("%d\n",(int){aa[n-i-1].x+0.5});
return 0;
}
【bzoj2194】快速傅立叶之二 FFT的更多相关文章
- BZOJ2194:快速傅立叶之二(FFT)
Description 请计算C[k]=sigma(a[i]*b[i-k]) 其中 k < = i < n ,并且有 n < = 10 ^ 5. a,b中的元素均为小于等于100的非 ...
- bzoj2194 快速傅立叶之二 ntt
bzoj2194 快速傅立叶之二 链接 bzoj 思路 对我这种和式不强的人,直接转二维看. 发现对\(C_k\)贡献的数对(i,j),都是右斜对角线. 既然贡献是对角线,我们可以利用对角线的性质了. ...
- [bzoj2194]快速傅立叶之二_FFT
快速傅立叶之二 bzoj-2194 题目大意:给定两个长度为$n$的序列$a$和$b$.求$c$序列,其中:$c_i=\sum\limits_{j=i}^{n-1} a_j\times b_{j-i} ...
- bzoj 2194: 快速傅立叶之二 -- FFT
2194: 快速傅立叶之二 Time Limit: 10 Sec Memory Limit: 259 MB Description 请计算C[k]=sigma(a[i]*b[i-k]) 其中 k & ...
- 2018.11.18 bzoj2194: 快速傅立叶之二(fft)
传送门 模板题. 将bbb序列反过来然后上fftfftfft搞定. 代码: #include<bits/stdc++.h> #define ri register int using na ...
- BZOJ2194 快速傅立叶之二 【fft】
题目 请计算C[k]=sigma(a[i]*b[i-k]) 其中 k < = i < n ,并且有 n < = 10 ^ 5. a,b中的元素均为小于等于100的非负整数. 输入格式 ...
- bzoj2194: 快速傅立叶之二
#include <iostream> #include <cstdio> #include <cstring> #include <cmath> #i ...
- bzoj千题计划256:bzoj2194: 快速傅立叶之二
http://www.lydsy.com/JudgeOnline/problem.php?id=2194 相乘两项的下标 的 差相同 那么把某一个反过来就是卷积形式 fft优化 #include< ...
- BZOJ.2194.快速傅立叶之二(FFT 卷积)
题目链接 \(Descripiton\) 给定\(A[\ ],B[\ ]\),求\[C[k]=\sum_{i=k}^{n-1}A[i]*B[i-k]\ (0\leq k<n)\] \(Solut ...
随机推荐
- CAN设计与应用指南
CAN设计与应用指南 0.前言 这是我为公司写的一个关于CAN总线的入门文章,对全面理解CAN总线特性很有帮助,拿出来分享给大家. 1. 简介 CAN总线由德国BOSCH公司开发,最高速率可达到1Mb ...
- CAN总线学习总结——错误帧和错误状态
CAN总线学习总结——错误帧和错误状态 标签: 数据 / 错误帧 / 错误状态 / CAN总线 / 总线协议 253 一.五种CAN总线可能发生的错误 1.CRC错误: 接收节点计算出的CRC校验值, ...
- 创世纪 BZOJ3037 & [Poi2004]SZP BZOJ2068
分析: 树形DP中的一种,基环树DP 针对每一个环跑DP,f[i],g[i]分别表示选或者不选,之后我们注意每次遍历的时候,不要重复遍历. 附上代码: #include <cstdio> ...
- 20155216 Exp9 Web安全基础实践
Exp9 Web安全基础实践 基础问题回答 1.SQL注入攻击原理,如何防御? 1.对用户的输入进行校验,可以通过正则表达式,双"-"进行转换等. 2.不要使用动态拼装sql,可以 ...
- 20155233 《网络对抗》Exp7 网络欺诈技术防范
应用SET工具建立冒名网站 1.要让冒名网站在别的主机上也能看到,需要开启本机的Apache服务,并且要将Apache服务的默认端口改为80,先在kali中使用netstat -tupln |grep ...
- [LCT应用]
维护动态生成树,建树方法:假设边edge(x,y),则建立x ->edge->y的先后顺序.
- 微信小程序之路由
1. 路由方式 路由方式 触发时机 路由前页面 路由后页面 初始化 小程序打开的第一个页面 onLoad, onShow 打开新页面 调用 API wx.navigateTo 或使用组件 onHide ...
- LintCode——全排列
描述:给定一个数字列表,返回其所有可能的排列. 样例:给出一个列表[1,2,3],其全排列为:[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]] 说明: ...
- 金蝶盘点机PDA仓库条码管理家电类序列号扫描操作方法-采购入库单
1.1. 采购入库单 传统的进销存管理软件需要人工识别商品品种,清点商品数量,然后再去人工手工在电脑上一行行的录入采购入库单.录单效率低,误差大. 如果使用汉码盘点机PDA,入库时,仓管员只需要手持 ...
- sqli-labs 下载、安装
sqli-labs 下载.安装 下载地址:https://github.com/Audi-1/sqli-labs phpstudy:http://down.php.cn/PhpStudy2018021 ...