题面

感觉是个套路题,不是特别难(然而卡常

直接做不可做,改成算每个数的贡献

暴力的想法是容斥,即记录每个数在每行里的出现情况,从总方案中扣掉每一行都没选到这个数的方案,复杂度$O(n^3)$

我们发现很多时候一行里根本没有这个数,也就是说很多情况下都白枚举了,我们可以尝试直接对每个数求方案。具体来说我们把每个数出现的行丢进一个vector里,然后vector里一段相同的就是它在这行出现的次数,没出现的行可以直接算出来,这样复杂度就变成$O(n^2\log^2 n)$了,然后你就可以开始卡常了

用了fread+register+指针+unsigned int+const 才在 EOJ 上卡过去,我佛了

 #pragma GCC optimize(2)
#include<cstdio>
#include<vector>
#include<cstring>
#include<algorithm>
#define uint unsigned int
#define vint vector<uint>
using namespace std;
const int N=;
const uint mod=1e9+;
vint vec[N*N];
uint n,m,rd,all,tot,ans;
uint a[N][N],pw[N],uni[N*N]; char BF[<<],*P1=BF,*P2=BF;
char Gc(){return (P1==P2&&(P2=(P1=BF)+fread(BF,,<<,stdin),P1==P2)?EOF:*P1++);}
void Fread(uint &x)
{
x=; char ch=Gc();
while(!isdigit(ch)) ch=Gc();
while(isdigit(ch)) x=(x<<)+(x<<)+(ch^),ch=Gc();
} void Add(uint &x,uint y)
{
x+=y;
if(x>=mod) x-=mod;
}
int main()
{
register uint i,j,k;
Fread(m),Fread(n);
for(i=;i<=n;i++)
for(j=;j<=m;j++)
Fread(rd),uni[++tot]=*(*(a+i)+j)=rd;
sort(uni+,uni++tot);
const uint lth=unique(uni+,uni++tot)-uni-;
for(i=;i<=n;i++)
for(j=;j<=m;j++)
{
const uint t=lower_bound(uni+,uni++lth,*(*(a+i)+j))-uni;
vec[*(*(a+i)+j)=t].push_back(i);
}
for(i=pw[]=;i<=n;i++) pw[i]=1ll*pw[i-]*m%mod;
for(i=;i<=lth;i++)
{
uint tmp=pw[n],tep=,res=n;
const uint siz=vec[i].size();
vint ve=vec[i];
for(j=;j<siz;j=k+)
{
k=j;
while(k+<siz&&ve[j]==ve[k+]) k++;
tep=1ll*tep*(m-(k-j+))%mod,res--;
}
tep=1ll*tep*pw[res]%mod;
Add(tmp,mod-tep),Add(ans,1ll*tmp*uni[i]%mod);
}
printf("%d",ans);
return ;
}

EOJ #276的更多相关文章

  1. EOJ Monthly 2019.2 题解(B、D、F)

    EOJ Monthly 2019.2 题解(B.D.F) 官方题解:https://acm.ecnu.edu.cn/blog/entry/320/ B. 解题 单测试点时限: 2.0 秒 内存限制:  ...

  2. UOJ #276「清华集训2016」汽水

    为什么你们常数都这么小啊 UOJ #276 题意:在树上找一条链使得|边权平均值$ -k$|尽量小,$ n<=5e4$ $ Solution:$ 首先二分答案$ ans$,即我们需要找一条链使得 ...

  3. 【BZOJ4738/UOJ#276】汽水(点分治,分数规划)

    [BZOJ4738/UOJ#276]汽水(点分治,分数规划) 题面 BZOJ UOJ 题解 今天考试的题目,虽然说是写完了,但是感觉还是半懂不懂的来着. 代码基本照着\(Anson\)爷的码的,orz ...

  4. EOJ Monthly 2018.8 D. Delivery Service-树上差分(边权/边覆盖)(边权转点权)(模板题)

    D. Delivery Service 单测试点时限: 2.5 秒 内存限制: 512 MB EOJ Delivery Service Company handles a massive amount ...

  5. EOJ Problem #3249 状态压缩+循环周期+反向递推

    限量供应 Time limit per test: 4.0 seconds Time limit all tests: 4.0 seconds Memory limit: 256 megabytes ...

  6. EOJ Monthly 2018.7

    准备继续大学acm啦 又要开始愉快的码码码啦 第一次在华东师大OJ上面做题 看来EOJ上的积分体质是假的,我怎么一把上红??? A.数三角形 神tm的防AK题放在A,出题人很不友好啊... 先写了个暴 ...

  7. Android Weekly Notes Issue #276

    September 24th, 2017 Android Weekly Issue #276 本期内容包括LifeCycle与Architecture的相关文章,以及新的JSON解析库Moshi的介绍 ...

  8. EOJ Monthly 2018.4

    A. ultmaster 的小迷妹们 Time limit per test: 2.0 seconds Memory limit: 256 megabytes ultmaster 男神和他的小迷妹们准 ...

  9. [UOJ#276]【清华集训2016】汽水

    [UOJ#276][清华集训2016]汽水 试题描述 牛牛来到了一个盛产汽水的国度旅行. 这个国度的地图上有 \(n\) 个城市,这些城市之间用 \(n−1\) 条道路连接,任意两个城市之间,都存在一 ...

随机推荐

  1. 微服务RPC框架选美

    原文:http://p.primeton.com/articles/59030eeda6f2a40690f03629 1.RPC 框架谁最美? Hello,everybody!说到RPC框架,可能大家 ...

  2. vb6/ASP FORMAT MM/DD/YYYY

    VB6或者ASP 格式化时间为 MM/dd/yyyy 格式,竟然没有好的办法, Format 或者FormatDateTime 竟然结果和系统设置的区域语言的日期和时间格式相关.意思是尽管你用诸如 F ...

  3. 20155217《网络对抗》Exp09 Web安全基础实践

    20155217<网络对抗>Exp09 Web安全基础实践 实践内容 关于webgoat:询问了很多人在安装webgoat时出现了错误,安装失败,因此直接通过同学copy了老师的虚拟机进行 ...

  4. Sagas模式

    Sagas属于一个错误管理模式,也同时用于控制复杂事务的执行和回滚等.同时,Compensating-Transaction模式的的实现也是也是类似于Sagas策略的,可以对比参考一下. Sagas的 ...

  5. ucos获得系统时间OSTimeGet();

    OSTimeGet() 获得系统节拍值OSTime,滴答定时器中断一次OSTime++.

  6. 记录一次 @Autowired 无法注入( spring依赖正常 idea显示有spring已注入的图标)导致空指针异常的原因

    首先,参考 https://blog.csdn.net/weixin_40475523/article/details/81085990 然后发现 是因为我把自己的这个类加上了 @Service 注解 ...

  7. centos7 lldb 调试netcore应用的内存泄漏和死循环示例(dump文件调试)

    写个demo来玩一玩linux平台下使用lldb加载sos来调试netcore应用. 当然,在真实的产线环境中需要分析的数据和难度远远高于demo所示,所以demo的作用也仅仅只能起到介绍工具的作用. ...

  8. 金蝶盘点机PDA仓库条码管理:仓库如何盘点

    1.1. 仓库盘点 传统的仓库盘点,需要人工手工抄写盘点单,时候再去电脑上一行行的录入盘点单,操作非常耗时费力,往往需要盘点好几天,最终盘点效果还不好,在抄写过程中容易出现错误,从而造成盘点结果不准确 ...

  9. 通过blockchain_go分析区块链交易原理

    原文链接-石匠的Blog 1.背景 在去中心化的区块链中进行交易(转账)是怎么实现的呢?本篇通过blockchain_go来分析一下.需要进行交易,首先就需要有交易的双方以及他们的认证机制,其次是各自 ...

  10. PAT甲题题解-1054. The Dominant Color (20)-排序/map

    原本用map,发现超时了,后来便先用数组存储排个序,最后for一遍统计每种颜色出现的次数(每种颜色的首位索引相减+1),找出最多的即可. #include <iostream> #incl ...