MT【170】裂项相消
已知$a,b>0$证明:$\dfrac{1}{a+2b}+\dfrac{1}{a+4b}+\dfrac{1}{a+6b}<\dfrac{3}{\sqrt{(a+b)(a+7b)}}$
证明:\begin{align*}
\dfrac{1}{a+2b}+\dfrac{1}{a+4b}+\dfrac{1}{a+6b}
& <\sqrt{3}{\sqrt{\left(\dfrac{1}{a+2b}\right)^2+\left(\dfrac{1}{a+4b}\right)^2+\left(\dfrac{1}{a+6b}\right)^2}} \\
& <\sqrt{3}{\sqrt{\dfrac{1}{(a+b)(a+3b)}+\dfrac{1}{(a+3b)(a+5b)}+\dfrac{1}{(a+5b)(a+7b)}}}\\
&=\sqrt{3}{\sqrt{\dfrac{1}{2b}\left(\dfrac{1}{a+b}-\dfrac{1}{a+7b}\right)}}\\
&=\dfrac{3}{\sqrt{(a+b)(a+7b)}}.
\end{align*}
注:这里的裂项主要是考虑到相消,一般项
$\dfrac{1}{(a+2bk)^2}<\dfrac{1}{(a+2bk)^2-\lambda^2}=\dfrac{1}{2\lambda}\left( \dfrac{1}{a+2bk-\lambda}-\dfrac{1}{a+2bk+\lambda}\right),2\lambda=2b$
MT【170】裂项相消的更多相关文章
- MT【71】数列裂项放缩题
已知${a_n}$满足$a_1=1,a_{n+1}=(1+\frac{1}{n^2+n})a_n.$证明:当$n\in N^+$时, $(1)a_{n+1}>a_n.(2)\frac{2n}{n ...
- 【ContestHunter】【弱省胡策】【Round8】
平衡树维护凸壳/三角函数+递推+线段树 官方题解:http://pan.baidu.com/s/1sjQbY8H 洛阳城里春光好 题目大意:(其实出题人已经写的很简短了……直接copy的-_-.sor ...
- 2019年牛客多校第一场 B题 Integration 数学
题目链接 传送门 思路 首先我们对\(\int_{0}^{\infty}\frac{1}{\prod\limits_{i=1}^{n}(a_i^2+x^2)}dx\)进行裂项相消: \[ \begin ...
- 2019HDU多校第九场 Rikka with Quicksort —— 数学推导&&分段打表
题意 设 $$g_m(n)=\begin{cases}& g_m(i) = 0, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ...
- 2019牛客暑期多校训练营(第一场) B Integration (数学)
链接:https://ac.nowcoder.com/acm/contest/881/B 来源:牛客网 Integration 时间限制:C/C++ 2秒,其他语言4秒 空间限制:C/C++ 5242 ...
- @codechef - SERSUM@ Series Sum
目录 @description@ @solution@ @part - 1@ @part - 2@ @part - 3@ @accepted code@ @details@ @description@ ...
- Luogu P1625 求和
题意 给定两个整数 \(n,m\),求 \[\sum\limits_{i=1}^{n}\frac{1}{\prod\limits_{j=i}^{i+m-1}j} \] \(\texttt{Data R ...
- MT【167】反复放缩
已知数列$\{a_n\}$满足:$a_1=1,a_{n+1}=a_n+\dfrac{a_n^2}{n(n+1)}$1)证明:对任意$n\in N^+,a_n<5$2)证明:不存在$M\le4$, ...
- 数列的前$n$项和$S_n$的求法
相关公式 ①等差数列的\(S_n=\cfrac{n(a_1+a_n)}{2}=na_1+\cfrac{n(n-1)\cdot d}{2}\) ②等比数列的\(S_n=\left\{\begin{arr ...
随机推荐
- HDFS--大数据应用的基石
近些年,由于智能手机的迅速普及推动移动互联网技术的蓬勃发展,全球数据呈现爆发式的增长.2018年5月企鹅号的统计结果:互联网每天新增的数据量达2.5*10^18字节,而全球90%的数据都是在过去的两年 ...
- Could not obtain transaction-synchronized Session for current thread原因及解决方案
在开发中,碰到到了Could not obtain transaction-synchronized Session for current thread异常,因此特意记录下. 一.问 ...
- Oracle中,如何查看FRA(Flashback Recovery Area)的利用率
例子: SQL> set linesize 300SQL> select * from V$RECOVERY_AREA_USAGE; FILE_TYPE PERCENT_SPACE_USE ...
- mfc CProgressCtrl
CProgressCtrl常用属性 CProgressCtrl类常用成员函数 CProgressCtrl代码示例 一.CProgressCtrl控件属性 当我们在处理大程序时,常常需要耗很长时间(比如 ...
- BERT总结:最先进的NLP预训练技术
BERT(Bidirectional Encoder Representations from Transformers)是谷歌AI研究人员最近发表的一篇论文:BERT: Pre-training o ...
- [CF1065F]Up and Down the Tree[树dp]
题意 给定一棵以 \(1\) 为根的树,你每次可以选择跳到某个叶子节点,再跳到和他深度差不超过 \(k\) 的祖先.询问最多能够跳到多少个叶子节点. \(n,k\leq 10^6\) . 分析 最后的 ...
- Markdown 编辑器
桌面编辑器 MarkdownPad Pro 版注册邮箱: Soar360@live.com 授权密钥: GBPduHjWfJU1mZqcPM3BikjYKF6xKhlKIys3i1MU2eJHqWGI ...
- 基于约束的SQL攻击
前言 值得庆幸的是如今开发者在构建网站时,已经开始注重安全问题了.绝大部分开发者都意识到SQL注入漏洞的存在,在本文我想与读者共同去探讨另一种与SQL数据库相关的漏洞,其危害与SQL注入不相上下,但却 ...
- python中列表的常用操作增删改查
1. 列表的概念,列表是一种存储大量数据的存储模型. 2. 列表的特点,列表具有索引的概念,可以通过索引操作列表中的数据.列表中的数据可以进行添加.删除.修改.查询等操作. 3. 列表的基本语法 创建 ...
- LintCode——合并排序数组II
描述:合并两个排序的整数数组A和B变成一个新的数组 样例:给出A=[1,2,3,4],B=[2,4,5,6],返回 [1,2,2,3,4,4,5,6] 1.Python:先将数组B加到数组A之后,然后 ...