MT【170】裂项相消
已知$a,b>0$证明:$\dfrac{1}{a+2b}+\dfrac{1}{a+4b}+\dfrac{1}{a+6b}<\dfrac{3}{\sqrt{(a+b)(a+7b)}}$
证明:\begin{align*}
\dfrac{1}{a+2b}+\dfrac{1}{a+4b}+\dfrac{1}{a+6b}
& <\sqrt{3}{\sqrt{\left(\dfrac{1}{a+2b}\right)^2+\left(\dfrac{1}{a+4b}\right)^2+\left(\dfrac{1}{a+6b}\right)^2}} \\
& <\sqrt{3}{\sqrt{\dfrac{1}{(a+b)(a+3b)}+\dfrac{1}{(a+3b)(a+5b)}+\dfrac{1}{(a+5b)(a+7b)}}}\\
&=\sqrt{3}{\sqrt{\dfrac{1}{2b}\left(\dfrac{1}{a+b}-\dfrac{1}{a+7b}\right)}}\\
&=\dfrac{3}{\sqrt{(a+b)(a+7b)}}.
\end{align*}
注:这里的裂项主要是考虑到相消,一般项
$\dfrac{1}{(a+2bk)^2}<\dfrac{1}{(a+2bk)^2-\lambda^2}=\dfrac{1}{2\lambda}\left( \dfrac{1}{a+2bk-\lambda}-\dfrac{1}{a+2bk+\lambda}\right),2\lambda=2b$
MT【170】裂项相消的更多相关文章
- MT【71】数列裂项放缩题
已知${a_n}$满足$a_1=1,a_{n+1}=(1+\frac{1}{n^2+n})a_n.$证明:当$n\in N^+$时, $(1)a_{n+1}>a_n.(2)\frac{2n}{n ...
- 【ContestHunter】【弱省胡策】【Round8】
平衡树维护凸壳/三角函数+递推+线段树 官方题解:http://pan.baidu.com/s/1sjQbY8H 洛阳城里春光好 题目大意:(其实出题人已经写的很简短了……直接copy的-_-.sor ...
- 2019年牛客多校第一场 B题 Integration 数学
题目链接 传送门 思路 首先我们对\(\int_{0}^{\infty}\frac{1}{\prod\limits_{i=1}^{n}(a_i^2+x^2)}dx\)进行裂项相消: \[ \begin ...
- 2019HDU多校第九场 Rikka with Quicksort —— 数学推导&&分段打表
题意 设 $$g_m(n)=\begin{cases}& g_m(i) = 0, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ...
- 2019牛客暑期多校训练营(第一场) B Integration (数学)
链接:https://ac.nowcoder.com/acm/contest/881/B 来源:牛客网 Integration 时间限制:C/C++ 2秒,其他语言4秒 空间限制:C/C++ 5242 ...
- @codechef - SERSUM@ Series Sum
目录 @description@ @solution@ @part - 1@ @part - 2@ @part - 3@ @accepted code@ @details@ @description@ ...
- Luogu P1625 求和
题意 给定两个整数 \(n,m\),求 \[\sum\limits_{i=1}^{n}\frac{1}{\prod\limits_{j=i}^{i+m-1}j} \] \(\texttt{Data R ...
- MT【167】反复放缩
已知数列$\{a_n\}$满足:$a_1=1,a_{n+1}=a_n+\dfrac{a_n^2}{n(n+1)}$1)证明:对任意$n\in N^+,a_n<5$2)证明:不存在$M\le4$, ...
- 数列的前$n$项和$S_n$的求法
相关公式 ①等差数列的\(S_n=\cfrac{n(a_1+a_n)}{2}=na_1+\cfrac{n(n-1)\cdot d}{2}\) ②等比数列的\(S_n=\left\{\begin{arr ...
随机推荐
- jQuery上传文件
1.引入资源 <script src="/yami/backend/backres/js/jquery.min.js"></script> <scri ...
- jquery方法简单记录
append() - 在被选元素的结尾插入内容 prepend() - 在被选元素的开头插入内容 after() - 在被选元素之后插入内容 before() - 在被选元素之前插入内容 firs ...
- Delphi DBGrid类控件定位到某一行,并更改为选中状态。
Delphi中,可以使用数据集控件提供的 Locate 成员方法快速定位至某条记录, 然后通过清除数据集控件的选中状态,并重新赋值达到我们的目的. grDirectory.DataSource.Dat ...
- Wild Dog sample [sync data]
<html> <head> <meta charset="UTF-8"> <title>test wilddog </titl ...
- 20155318 《网络攻防》Exp3 免杀原理与实践
20155318 <网络攻防>Exp3 免杀原理与实践 基础问题 杀软是如何检测出恶意代码的? 基于特征来检测:恶意代码中一般会有一段有较明显特征的代码也就是特征码,如果杀毒软件检测到有程 ...
- [Oracle]坏块处理:确认坏块的对象
如果已经知道 FILE#,BLOCK#,则 可以通过如下查询来看: SQL> SELECT SEGMENT_TYPE,OWNER||'.'||SEGMENT_NAME FROM DBA_EXTE ...
- CS229笔记:生成学习算法
在线性回归.逻辑回归.softmax回归中,学习的结果是\(p(y|x;\theta)\),也就是给定\(x\)的条件下,\(y\)的条件概率分布,给定一个新的输入\(x\),我们求出不同输出的概率, ...
- [UOJ#461]新年的Dog划分[二分图染色、二分]
题意 给你一张无向连通图,你并不知道有哪些边,你首先要回答这张图是否是二分图,如果是,回答这张图黑白染色过后的任意一个点集.你需要在2000次询问内找到结果,每次你可以询问原图中一个边集删掉后是否还连 ...
- 新员工入门 - for测试
23456人员介绍 XXX 测试工作 [软件] Chrome 浏览器.jsonviewer.Firefox.FireBug HTTP协议与抓包 - fildder.wireshirk等 DB查询工具 ...
- JavaScript快速入门-ECMAScript语句
JavaScript语句(if.for.for in.do...while.while.break.continue.switch) 一.if语句 if (condition) statement1 ...