题解

这个出题人完美诠释了什么叫

用心出题,用脚造数据

算完复杂度怎么也得\(O(o^2 * 200)\)略微跑不满,但是有8个测试点虽然有障碍但是一个障碍都不在路径上,2个测试点只有10来个点在路径上

这么轻松愉快的嘛????

如果没有障碍的话只和\(1\)的数量有关

那么我们设\(dp[i][j][k]\)表示第一维有\(i\)个\(1\)第二维有\(j\)个\(1\)第三维有\(k\)个\(1\)的方案数

转移的时候枚举哪一位增加了多少1

方案数是

\(\binom{i}{h}\cdot dp[i - h][j][k] \rightarrow dp[i][j][k]\)

\(\binom{j}{h}\cdot dp[i][j - h][k] \rightarrow dp[i][j][k]\)

\(\binom{k}{h}\cdot dp[i][j][k - h] \rightarrow dp[i][j][k]\)

然后就成功得到80分做完预处理了

然后我没啥好想法了我觉得就设一个\(f[i][j]\)表示走到第\(i\)个点至少经过\(j\)个点

估算一下第二维最多是60 +60 + 60

然后我按照每个点的第一维排序,第一维相等按第二维,第二维相等按第三维,这就是拓扑序了,就暴力更新一下就好了吧(因为感觉跑满复杂度的点不太好造)

结果这不满的也太厉害了吧= =,实际上o<=20了解一下????

update:翻了stdcall的代码发现根本用不上第二维,因为每次转移的时候多了一个点相当于取反一次,所以就是\(O(o^2)\)的

我好菜啊QAQ

代码



#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define pdi pair<db,int>
#define mp make_pair
#define pb push_back
#define enter putchar('\n')
#define space putchar(' ')
#define eps 1e-8
#define MAXN 100005
#define mo 974711
//#define ivorysi
using namespace std;
typedef long long int64;
typedef double db;
template<class T>
void read(T &res) {
res = 0;char c = getchar();T f = 1;
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 + c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {x = -x;putchar('-');}
if(x >= 10) {
out(x / 10);
}
putchar('0' + x % 10);
}
const int MOD = 998244353;
int64 N,M,R,x[10005],y[10005],z[10005];
int dp[64][64][64],C[64][64],ans;
bool vis[10005];
int f[10005],O,cntx[10005],cnty[10005],cntz[10005],id[10005],idx,cn,cm,cr;
int64 lowbit(int64 x) {return x & (-x);}
int inc(int a,int b) {
return a + b >= MOD ? a + b - MOD : a + b;
}
int mul(int a,int b) {
return 1LL * a * b % MOD;
}
int calc(int64 x) {
int cnt = 0;
while(x) {
++cnt;
x -= lowbit(x);
}
return cnt;
}
bool cmp(int a,int b) {
if(x[a] != x[b]) return x[a] < x[b];
if(y[a] != y[b]) return y[a] < y[b];
return z[a] < z[b];
}
void Solve() {
read(N);read(M);read(R);
C[0][0] = 1;
for(int i = 1 ; i <= 62 ; ++i) {
C[i][0] = 1;
for(int j = 1 ; j <= i ; ++j) {
C[i][j] = inc(C[i - 1][j - 1],C[i - 1][j]);
}
}
dp[0][0][0] = 1;
for(int i = 0 ; i <= 62 ; ++i) {
for(int j = 0 ; j <= 62 ; ++j) {
for(int k = 0 ; k <= 62 ; ++k) {
if(!(i + j + k)) continue;
for(int h = 1 ; h <= i ; ++h) dp[i][j][k] = inc(dp[i][j][k],mul(dp[i - h][j][k],C[i][h]));
for(int h = 1 ; h <= j ; ++h) dp[i][j][k] = inc(dp[i][j][k],mul(dp[i][j - h][k],C[j][h]));
for(int h = 1 ; h <= k ; ++h) dp[i][j][k] = inc(dp[i][j][k],mul(dp[i][j][k - h],C[k][h]));
}
}
}
ans = dp[cn = calc(N)][cm = calc(M)][cr = calc(R)];
read(O);
for(int i = 1 ; i <= O ; ++i) {
read(x[i]);read(y[i]);read(z[i]);
cntx[i] = calc(x[i]);cnty[i] = calc(y[i]);cntz[i] = calc(z[i]);
if((x[i] & N) == x[i] && (y[i] & M) == y[i] && (z[i] & R) == z[i]) id[++idx] = i;
}
sort(id + 1,id + idx + 1,cmp);
for(int i = 1 ; i <= idx ; ++i) {
int u = id[i];
f[u] = inc(f[u],MOD - dp[cntx[u]][cnty[u]][cntz[u]]);
ans = inc(ans,mul(f[u],dp[cn - cntx[u]][cm - cnty[u]][cr - cntz[u]])); for(int k = i + 1 ; k <= idx ; ++k) {
if((x[u] & x[id[k]]) == x[u] && (y[u] & y[id[k]]) == y[u] && (z[u] & z[id[k]]) == z[u]) {
f[id[k]] = inc(f[id[k]],mul(f[u],MOD - dp[cntx[id[k]] - cntx[u]][cnty[id[k]] - cnty[u]][cntz[id[k]] - cntz[u]]));
}
}
}
out(ans);enter;
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
Solve();
}

【LOJ】#2277. 「HAOI2017」方案数的更多相关文章

  1. LOJ 3094 「BJOI2019」删数——角标偏移的线段树

    题目:https://loj.ac/problem/3094 弱化版是 AGC017C . 用线段树维护那个题里的序列即可. 对应关系大概是: 真实值的范围是 [ 1-m , n+m ] :考虑设偏移 ...

  2. @loj - 2174@ 「FJOI2016」神秘数

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 一个可重复数字集合 S 的神秘数定义为最小的不能被 S 的子集的 ...

  3. loj#2312. 「HAOI2017」八纵八横(线性基 线段树分治)

    题意 题目链接 Sol 线性基+线段树分治板子题.. 调起来有点自闭.. #include<bits/stdc++.h> #define fi first #define se secon ...

  4. 【LOJ】#3094. 「BJOI2019」删数

    LOJ#3094. 「BJOI2019」删数 之前做atcoder做到过这个结论结果我忘了... em,就是\([1,n]\)之间每个数\(i\),然后\([i - cnt[i] + 1,i]\)可以 ...

  5. Loj #3056. 「HNOI2019」多边形

    Loj #3056. 「HNOI2019」多边形 小 R 与小 W 在玩游戏. 他们有一个边数为 \(n\) 的凸多边形,其顶点沿逆时针方向标号依次为 \(1,2,3, \ldots , n\).最开 ...

  6. Loj 3058. 「HNOI2019」白兔之舞

    Loj 3058. 「HNOI2019」白兔之舞 题目描述 有一张顶点数为 \((L+1)\times n\) 的有向图.这张图的每个顶点由一个二元组 \((u,v)\) 表示 \((0\le u\l ...

  7. Loj #2554. 「CTSC2018」青蕈领主

    Loj #2554. 「CTSC2018」青蕈领主 题目描述 "也许,我的生命也已经如同风中残烛了吧."小绿如是说. 小绿同学因为微积分这门课,对"连续"这一概 ...

  8. Loj #2719. 「NOI2018」冒泡排序

    Loj #2719. 「NOI2018」冒泡排序 题目描述 最近,小 S 对冒泡排序产生了浓厚的兴趣.为了问题简单,小 S 只研究对 *\(1\) 到 \(n\) 的排列*的冒泡排序. 下面是对冒泡排 ...

  9. Loj #3102. 「JSOI2019」神经网络

    Loj #3102. 「JSOI2019」神经网络 题目背景 火星探险队发现,火星人的思维方式与人类非常不同,是因为他们拥有与人类很不一样的神经网络结构.为了更好地理解火星人的行为模式,JYY 对小镇 ...

随机推荐

  1. BZOJ 4173: 数学

    4173: 数学 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 462  Solved: 227[Submit][Status][Discuss] D ...

  2. 洛谷 P3629 [APIO2010]巡逻 解题报告

    P3629 [APIO2010]巡逻 题目描述 在一个地区中有 n 个村庄,编号为 1, 2, ..., n.有 n – 1 条道路连接着这些村 庄,每条道路刚好连接两个村庄,从任何一个村庄,都可以通 ...

  3. Luogu 2762 太空飞行计划 / Libre 6001 「网络流 24 题」太空飞行计划 (网络流,最大流)

    Luogu 2762 太空飞行计划 / Libre 6001 「网络流 24 题」太空飞行计划 (网络流,最大流) Description W 教授正在为国家航天中心计划一系列的太空飞行.每次太空飞行 ...

  4. c++并发编程之线程的互斥与同步

    什么是线程的同步与互斥? 互斥:指在某一时刻指允许一个进程运行其中的程序片,具有排他性和唯一性. 对于线程A和线程B来讲,在同一时刻,只允许一个线程对临界资源进行操作,即当A进入临界区对资源操作时,B ...

  5. PAM认证机制详情

    PAM(Pluggable Authentication Modules)认证机制详情 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任.      一.介绍PAM PAM(Plugga ...

  6. openstack项目【day23】:虚拟化介绍

    本节内容 一 什么是虚拟化 二 为何要学习虚拟化 三 虚拟化技术主要分类(了解) 四 平台虚拟化技术又可以细分(了解) 一 什么是虚拟化 虚拟化说白了就是本来是一个完整的资源,切分或者说虚拟成多份,让 ...

  7. nodejs npm install -g 全局安装

    1. npm install xxx -g 时, 模块将被下载安装到[全局目录]中. [全局目录]通过 npm config set prefix "目录路径" 来设置. 比如说, ...

  8. bzoj千题计划216:bzoj1499: [NOI2005]瑰丽华尔兹

    http://www.lydsy.com/JudgeOnline/problem.php?id=1499 预处理从每个位置向每个方向最多能走几步 dp[k][i][j] 第k个时间段后,钢琴到位置(i ...

  9. html5 canvas画布上合成

    source-over 默认.在目标图像上显示源图像. source-atop 在目标图像顶部显示源图像.源图像位于目标图像之外的部分是不可见的. source-in 在目标图像中显示源图像.只有目标 ...

  10. checkbox判断不为空

    checkbox不为空 html页面: @foreach($seals as $v) <input type="checkbox" name="seal_id[]& ...