P1006 传纸条 多维DP
题目描述
小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题。一次素质拓展活动中,班上同学安排做成一个mm行nn列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了。幸运的是,他们可以通过传纸条来进行交流。纸条要经由许多同学传到对方手里,小渊坐在矩阵的左上角,坐标(1,1(1,1),小轩坐在矩阵的右下角,坐标(m,n)(m,n)。从小渊传到小轩的纸条只可以向下或者向右传递,从小轩传给小渊的纸条只可以向上或者向左传递。
在活动进行中,小渊希望给小轩传递一张纸条,同时希望小轩给他回复。班里每个同学都可以帮他们传递,但只会帮他们一次,也就是说如果此人在小渊递给小轩纸条的时候帮忙,那么在小轩递给小渊的时候就不会再帮忙。反之亦然。
还有一件事情需要注意,全班每个同学愿意帮忙的好感度有高有低(注意:小渊和小轩的好心程度没有定义,输入时用00表示),可以用一个0-1000−100的自然数来表示,数越大表示越好心。小渊和小轩希望尽可能找好心程度高的同学来帮忙传纸条,即找到来回两条传递路径,使得这22条路径上同学的好心程度之和最大。现在,请你帮助小渊和小轩找到这样的22条路径。
输入输出格式
输入格式:
输入文件,第一行有22个用空格隔开的整数mm和nn,表示班里有mm行nn列。
接下来的mm行是一个m \times nm×n的矩阵,矩阵中第ii行jj列的整数表示坐在第ii行jj列的学生的好心程度。每行的nn个整数之间用空格隔开。
输出格式:
输出文件共一行,包含一个整数,表示来回22条路上参与传递纸条的学生的好心程度之和的最大值。
输入输出样例
3 3
0 3 9
2 8 5
5 7 0
34 第一种方法:
应该很容易就想到四维dp 枚举出两封信所处位置 注意初始化细节和循环细节
#include<bits/stdc++.h>
using namespace std;
//input
#define rep(i,a,b) for(int i=(a);i<=(b);i++)
#define RI(n) scanf("%d",&(n))
#define RII(n,m) scanf("%d%d",&n,&m);
#define RIII(n,m,k) scanf("%d%d%d",&n,&m,&k)
#define RS(s) scanf("%s",s);
#define LL long long
#define REP(i,N) for(int i=0;i<(N);i++)
#define CLR(A,v) memset(A,v,sizeof A)
//////////////////////////////////
#define N 50+5
#define inf 0x3f3f3f3f
int mp[N][N];
int dp[N][N][N][N];
int main()
{
int n,m;
RII(n,m);
rep(i,,n)
rep(j,,m)
RI(mp[i][j]); CLR(dp,-0x3f);
dp[][][][]=;//这两句初始化不加也能ac 因为好感度都是正数 即使出界了也都是+0 不影响结果
//dp[2][1][1][2]=mp[2][1]+mp[1][2];//这句加了的话就重复了
rep(i,,n)
rep(j,,m)
rep(s,,n)
rep(k,j+,m)//注意第二个状态量始终在第一个状态量的右边
{
dp[i][j][s][k]=max(dp[i][j][s][k],dp[i-][j][s-][k]);
dp[i][j][s][k]=max(dp[i][j][s][k],dp[i][j-][s][k-]);
dp[i][j][s][k]=max(dp[i][j][s][k],dp[i-][j][s][k-]);
dp[i][j][s][k]=max(dp[i][j][s][k],dp[i][j-][s-][k]);
dp[i][j][s][k]+=mp[i][j]+mp[s][k];
}
cout<<dp[n][m-][n-][m];
}
第二种方法:
对n4进行优化至n3
注意观察横纵坐标之和 不管是向下移动还是向右移动 横纵坐标之和都是加一!
但是发生了奇怪的问题(貌似就我发生了) 所以以后考虑最严谨方案即可 不要轻易作死!
#include<bits/stdc++.h>
using namespace std;
//input
#define rep(i,a,b) for(int i=(a);i<=(b);i++)
#define RI(n) scanf("%d",&(n))
#define RII(n,m) scanf("%d%d",&n,&m);
#define RIII(n,m,k) scanf("%d%d%d",&n,&m,&k)
#define RS(s) scanf("%s",s);
#define LL long long
#define REP(i,N) for(int i=0;i<(N);i++)
#define CLR(A,v) memset(A,v,sizeof A)
//////////////////////////////////
#define N 50+5
#define inf 0x3f3f3f3f
int mp[N][N];
long long dp[*N][N][N];
int main()
{
int n,m;
RII(n,m);
rep(i,,n)
rep(j,,m)
RI(mp[i][j]); rep(i,,)
rep(q,,)
rep(w,,)
dp[i][q][w]=-;//这里改成LONGLONGMIN 反而会错 明明LONGLONGMIN更小 慎用LONGLONGMIN//最稳妥的方式是去掉这个初始化 加上dp过程中的判负条件!!! dp[][][]=;
rep(k,,n+m-)
rep(i,,m-)
rep(j,i+,m)
{
dp[k][i][j]=max(dp[k][i][j],dp[k-][i][j]);
dp[k][i][j]=max(dp[k][i][j],dp[k-][i-][j]);
dp[k][i][j]=max(dp[k][i][j],dp[k-][i][j-]);
dp[k][i][j]=max(dp[k][i][j],dp[k-][i-][j-]);
// if(dp[k][i][j]<0)continue;//不知道为什么不加这句就会错 明明初始负数为数据的指数倍 不可能填到0以上(是有可能的 三重循环疯狂增长)//最好的方法是加上这句话!!
dp[k][i][j]+=mp[k-i][i]+mp[k-j][j];
}
cout<<dp[n+m-][m-][m];
}
P1006 传纸条 多维DP的更多相关文章
- 洛谷 P1006 传纸条 多维DP
传纸条详解: 蒟蒻最近接到了练习DP的通知,于是跑来试炼场看看:发现有点难(毕竟是蒟蒻吗)便去翻了翻题解,可怎么都看不懂.为什么呢?蒟蒻发现题解里都非常详细的讲了转移方程,讲了降维优化,但这题新颖之处 ...
- 洛谷P1006 传纸条 (棋盘dp)
好气,在洛谷上交就过了,在caioj上交就只有40分 之前在51nod做过这道题了. https://blog.csdn.net/qq_34416123/article/details/8180902 ...
- P1006 传纸条(二维、三维dp)
P1006 传纸条 输入输出样例 输入 #1 复制 3 3 0 3 9 2 8 5 5 7 0 输出 #1 复制 34 说明/提示 [限制] 对于 30% 的数据,1≤m,n≤10: 对于 100% ...
- 【洛谷】【动态规划(多维)】P1006 传纸条
[题目描述:] 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个m行n列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了.幸 ...
- 棋盘DP三连——洛谷 P1004 方格取数 &&洛谷 P1006 传纸条 &&Codevs 2853 方格游戏
P1004 方格取数 题目描述 设有N $\times N$N×N的方格图(N $\le 9$)(N≤9),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字00.如下图所示(见样例): A ...
- [Luogu P1006]传纸条 (网格DP)
题面 传送门:https://www.luogu.org/problemnew/show/P1006 Solution 挺显然但需要一定理解的网络(应该是那么叫吧)DP 首先有一个显然但重要的结论要发 ...
- 洛谷 P1006 传纸条 题解
P1006 传纸条 题目描述 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个m行n列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法 ...
- 洛谷P1006 传纸条(多维DP)
小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个mm行nn列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了.幸运的是,他们 ...
- P1006 传纸条 (方格取数dp)
题目描述 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个mm行nn列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了.幸运 ...
随机推荐
- 【BZOJ1090】[SCOI2003]字符串折叠(动态规划)
[BZOJ1090][SCOI2003]字符串折叠(动态规划) 题面 BZOJ 洛谷 题解 区间\(dp\).设\(f[i][j]\)表示压缩\([i,j]\)区间的最小长度.显然可以枚举端点转移.再 ...
- 循环取月的三位英语名 Jan Feb
CultureInfo ci = new CultureInfo("en-US"); DateTime now = DateTime.Now; for (int i = 0; i ...
- svn:重命名文件之后,不允许提交
1.错误代码 org.apache.subversion.javahl.ClientException: Illegal target for the requested operation svn: ...
- springboot整合mybatis中的mapper不影响使用,但是总是提示红线
解决方案: 如图:
- Nginx配置——区分PC或手机访问不同域名以及http跳转https
新官网上线,但在手机上访问新官网的体验很差,要求在手机上访问新官网时访问旧官网,可以通过修改Nginx配置来实现自动跳转.首先是新官网的Nginx配置文件加个跳转判断,通过user-agent判断来源 ...
- Java基础-SSM之Spring的POJO(Plain Old Java Object)实现AOP
Java基础-SSM之Spring的POJO(Plain Old Java Object)实现AOP 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 上次我分享过Spring传统的A ...
- shell jq
Mark 下,周末来补充 参考资料: https://stedolan.github.io/jq/tutorial/
- c#:无法将 NULL 转换成“System.DateTime”,因为它是一种值类型
摘自:http://www.blogjava.net/parable-myth/archive/2010/09/30/333454.html 在C# 2.0里面的数据类型中,分为值类型和引用类型,引用 ...
- Ettercap之ARP+DNS欺骗
1.网络攻击拓扑环境 网关:192.168.133.2 攻击者:192.168.133.128 受害者:192.168.133.137 2.原理讲解 ARP欺骗 简介:ARP(Address Reso ...
- mysql集成部署
经常听说mysql数据库是集成在系统中,也一直不太明白集成的概念.今天才明白集成的概念就是将mysql所有的文件放到一个文件夹下放到系统中,也就是将mysql采用目录迁移部署的方式进行安装.在上一篇研 ...