紧接上文,我们讲述在线分类问题

为0-1损失,我们做出如下的简化假设:

学习者的目标是相对于hypotheses set: H具有low regret,其中H中的每个函数是从到{0,1}的映射,并且regret被定义为:

我们首先证明这是一个不可能完成的任务——如果,没有算法可以获得次线性regret bound。考虑是一个总是返0的函数,是一个总是返1的函数。通过简单地等待学习者的预测然后提供相反的答案作为真实答案,攻击者可以使任何在线算法的错误数等于T。相反,对于任何真实答案序列,令b为中的大多数标签,则的错误数最多为T/2。因此,任何在线算法的regret可能至少是T-T/2 =T/2,这不是T的次线性。

为了回避Cover’s impossibility result,我们进一步限制对抗环境的能力。下面展示两种方法。

  第一种方法是增加额外的一个假设:

  

  接下来,我们描述和分析在线学习算法,假设有限假设类(Finite Hypothesis Class)和输入序列的可实现性(realizability)。最自然的学习规则是使用(在任何在线回合)任何与过去所有例子一致的假设。

    

  Consistent 算法维持一个与一致的所有假设的集合。此集合通常称为version space。然后它从中选择任何假设并根据该假设进行预测。

  Consistent 算法的mistake bound:

  

  Halving算法:

  

  Having算法的mistake bound:

  

  证明:

  第二种方法是随机化(Randomization):  

  如果学习机输出),则它在t回合上的期望损失是:

  对predictions domain做改变,此时predictions domain不等于target domain:

  

  

  根据这个假设,可以推导出如下定理中所述的low regret算法:

  

  

  我们已经提出了两种不同的方法来回避Cover’s impossibility result: realizability 和 randomization。这两种方法似乎有些不同。然而,有一个深层的基本概念将它们连接起来。事实上,我们将证明这两种方法都可以解释为凸化技术。凸性是推导在线学习算法的中心主题,我们在下一节中进行研究。

  未完,待续。。。。。。

  下一节分析在线凸优化技术。

  

在线学习和在线凸优化(online learning and online convex optimization)—在线分类问题2的更多相关文章

  1. 在线学习和在线凸优化(online learning and online convex optimization)—FTL算法5

    最自然的学习规则是使用任何在过去回合中损失最小的向量. 这与Consistent算法的精神相同,它在在线凸优化中通常被称为Follow-The-Leader,最小化累积损失. 对于任何t: 我们谈到了 ...

  2. 在线学习和在线凸优化(online learning and online convex optimization)—在线凸优化框架3

    近年来,许多有效的在线学习算法的设计受到凸优化工具的影响. 此外,据观察,大多数先前提出的有效算法可以基于以下优雅模型联合分析: 凸集的定义: 一个向量 的Regret定义为: 如前所述,算法相对于竞 ...

  3. 在线学习和在线凸优化(online learning and online convex optimization)—基础介绍1

    开启一个在线学习和在线凸优化框架专题学习: 1.首先介绍在线学习的相关概念 在线学习是在一系列连续的回合(rounds)中进行的: 在回合,学习机(learner)被给一个question:(一个向量 ...

  4. 在线学习和在线凸优化(online learning and online convex optimization)—凸化方法4

    一些在线预测问题可以转化到在线凸优化框架中.下面介绍两种凸化技术: 一些在线预测问题似乎不适合在线凸优化框架.例如,在线分类问题中,预测域(predictions domain)或损失函数不是凸的.我 ...

  5. 在线学习和在线凸优化(online learning and online convex optimization)—FTRL算法6

  6. Alink漫谈(十三) :在线学习算法FTRL 之 具体实现

    Alink漫谈(十三) :在线学习算法FTRL 之 具体实现 目录 Alink漫谈(十三) :在线学习算法FTRL 之 具体实现 0x00 摘要 0x01 回顾 0x02 在线训练 2.1 预置模型 ...

  7. K12(在线学习的平台)

    项目:K12(在线学习的平台) 一.背景 目的是做一个在线的学习平台,提高学生的课程完成度 K12:大目标是要取代线下班 - 录制专门的视频 - 导师的监管:如果没有主动和那个学生聊天,就扣钱 - 学 ...

  8. 在线学习--online learning

    在线学习 online learning Online learning并不是一种模型,而是模型的训练方法.能够根据线上反馈数据,实时快速的进行模型调优,使得模型能够及时反映线上的变化,提高线上预测的 ...

  9. 各大公司广泛使用的在线学习算法FTRL详解

    各大公司广泛使用的在线学习算法FTRL详解 现在做在线学习和CTR常常会用到逻辑回归( Logistic Regression),而传统的批量(batch)算法无法有效地处理超大规模的数据集和在线数据 ...

随机推荐

  1. linux 之sed

    sed 用法 sed [-nefr] [action] -i 直接修改文件内容,而不是像其他命令那样只是输出到终端 a新增c取代d删除i插入p列印常与sed -n 使用s取代 有一点需要注意的是:如果 ...

  2. NET设计模式 第二部分 结构性模式(12):享元模式(Flyweight Pattern)

    享元模式(Flyweight Pattern) ——.NET设计模式系列之十三 Terrylee,2006年3月 摘要:面向对象的思想很好地解决了抽象性的问题,一般也不会出现性能上的问题.但是在某些情 ...

  3. 会话状态Session

    一.会话状态Session Session用于服务器端状态管理,使用Session之后,每个客户端都可以将实际的数据保存在服务器上,对于每个客户端的数据,将会生成一个对应的唯一的key(保存在客户端) ...

  4. Linux patch命令详解

    Linux patch命令 Linux patch命令用于修补文件. patch指令让用户利用设置修补文件的方式,修改,更新原始文件.倘若一次仅修改一个文件,可直接在指令列中下达指令依序执行.如果配合 ...

  5. springboot整合shiro-登录认证和权限管理

    https://blog.csdn.net/ityouknow/article/details/73836159

  6. FIFO 的控制逻辑---verilog代码

    FIFO 的控制逻辑---verilog代码 //fifo的例化 wire fifo_full; wire fifo_empty; : ] fifo_dout; :]rd_data_count; :] ...

  7. Delphi:窗体的扩展样式GWL_EXSTYLE用于SetWindowLong

    SetWindowLong(Handle, GWL_EXSTYLE, GetWindowLong(Handle, GWL_EXSTYLE) or WS_EX_TRANSPARENT or WS_EX_ ...

  8. 一个OpenGL小程序

    发个没什么技术含量的文,最近准备通过opengl的学习来好好c++,于是找了网上的教程来搭建opengl的编写环境,建了个空项目,又找了个案例稍微改了改运行了下,还成,ok了~喜不自禁~ 贴个图: 代 ...

  9. 并查集(Union-Find)

    常见问题: 首先在地图上给你若干个城镇,这些城镇都可以看作点,然后告诉你哪些对城镇之间是有道路直接相连的.最后要解决的是整幅图的连通性问题.比如随意给你两个点,让你判断它们是否连通,或者问你整幅图一共 ...

  10. Azure SQL 数据库仓库Data Warehouse (1) 入门

    <Windows Azure Platform 系列文章目录> 在之前的项目中遇到了客户使用SQL数据仓库的场景,在这里记录一下 1.什么是SQL 数据库仓库 (SQL DW) SQL D ...