在线学习和在线凸优化(online learning and online convex optimization)—在线分类问题2
紧接上文,我们讲述在线分类问题
令,
为0-1损失,我们做出如下的简化假设:
学习者的目标是相对于hypotheses set: H具有low regret,其中H中的每个函数是从到{0,1}的映射,并且regret被定义为:
我们首先证明这是一个不可能完成的任务——如果,没有算法可以获得次线性regret bound。考虑
,
是一个总是返0的函数,
是一个总是返1的函数。通过简单地等待学习者的预测然后提供相反的答案作为真实答案,攻击者可以使任何在线算法的错误数等于T。相反,对于任何真实答案序列,令b为
中的大多数标签,则
的错误数最多为T/2。因此,任何在线算法的regret可能至少是T-T/2 =T/2,这不是T的次线性。
为了回避Cover’s impossibility result,我们进一步限制对抗环境的能力。下面展示两种方法。
第一种方法是增加额外的一个假设:
接下来,我们描述和分析在线学习算法,假设有限假设类(Finite Hypothesis Class)和输入序列的可实现性(realizability)。最自然的学习规则是使用(在任何在线回合)任何与过去所有例子一致的假设。
Consistent 算法维持一个与一致的所有假设的集合
。此集合通常称为version space。然后它从中选择任何假设并根据该假设进行预测。
Consistent 算法的mistake bound:
Halving算法:
Having算法的mistake bound:
证明:
第二种方法是随机化(Randomization):
如果学习机输出(
),则它在t回合上的期望损失是:
对predictions domain做改变,此时predictions domain不等于target domain:
根据这个假设,可以推导出如下定理中所述的low regret算法:
我们已经提出了两种不同的方法来回避Cover’s impossibility result: realizability 和 randomization。这两种方法似乎有些不同。然而,有一个深层的基本概念将它们连接起来。事实上,我们将证明这两种方法都可以解释为凸化技术。凸性是推导在线学习算法的中心主题,我们在下一节中进行研究。
未完,待续。。。。。。
下一节分析在线凸优化技术。
在线学习和在线凸优化(online learning and online convex optimization)—在线分类问题2的更多相关文章
- 在线学习和在线凸优化(online learning and online convex optimization)—FTL算法5
最自然的学习规则是使用任何在过去回合中损失最小的向量. 这与Consistent算法的精神相同,它在在线凸优化中通常被称为Follow-The-Leader,最小化累积损失. 对于任何t: 我们谈到了 ...
- 在线学习和在线凸优化(online learning and online convex optimization)—在线凸优化框架3
近年来,许多有效的在线学习算法的设计受到凸优化工具的影响. 此外,据观察,大多数先前提出的有效算法可以基于以下优雅模型联合分析: 凸集的定义: 一个向量 的Regret定义为: 如前所述,算法相对于竞 ...
- 在线学习和在线凸优化(online learning and online convex optimization)—基础介绍1
开启一个在线学习和在线凸优化框架专题学习: 1.首先介绍在线学习的相关概念 在线学习是在一系列连续的回合(rounds)中进行的: 在回合,学习机(learner)被给一个question:(一个向量 ...
- 在线学习和在线凸优化(online learning and online convex optimization)—凸化方法4
一些在线预测问题可以转化到在线凸优化框架中.下面介绍两种凸化技术: 一些在线预测问题似乎不适合在线凸优化框架.例如,在线分类问题中,预测域(predictions domain)或损失函数不是凸的.我 ...
- 在线学习和在线凸优化(online learning and online convex optimization)—FTRL算法6
- Alink漫谈(十三) :在线学习算法FTRL 之 具体实现
Alink漫谈(十三) :在线学习算法FTRL 之 具体实现 目录 Alink漫谈(十三) :在线学习算法FTRL 之 具体实现 0x00 摘要 0x01 回顾 0x02 在线训练 2.1 预置模型 ...
- K12(在线学习的平台)
项目:K12(在线学习的平台) 一.背景 目的是做一个在线的学习平台,提高学生的课程完成度 K12:大目标是要取代线下班 - 录制专门的视频 - 导师的监管:如果没有主动和那个学生聊天,就扣钱 - 学 ...
- 在线学习--online learning
在线学习 online learning Online learning并不是一种模型,而是模型的训练方法.能够根据线上反馈数据,实时快速的进行模型调优,使得模型能够及时反映线上的变化,提高线上预测的 ...
- 各大公司广泛使用的在线学习算法FTRL详解
各大公司广泛使用的在线学习算法FTRL详解 现在做在线学习和CTR常常会用到逻辑回归( Logistic Regression),而传统的批量(batch)算法无法有效地处理超大规模的数据集和在线数据 ...
随机推荐
- spring-AOP框架(基于配置文件的方式配置AOP)
.xml: ref-指向,order-指定优先级
- jmeter—JDBC request动态参数设置
jmeter—JDBC request动态参数设置 重要参数说明: Variable Name:数据库连接池的名字,需要与JDBC Connection Configuration的Variable ...
- mysql常用函数总结
一.数学函数 abs(x) 返回x的绝对值 bin(x) 返回x的二进制(oct返回八进制,hex返回十六进制) ceiling(x) / ceil(x) 返回不小于x的最小整数值 floor(x) ...
- 开源Astro(SparkSQL On HBase)
华为2015年7月20日在O'Reilly Open Source Convention (OSCON) 上宣布Spark SQL on HBase package正式开源.Spark SQL on ...
- 【转】CSR蓝牙驱动程序引起的Win7奇怪问题
https://www.yanning.wang/archives/299.html @echo off title 恢复系统 REM 变量初始化 rem CSR路径 set CSRPath=&quo ...
- <亲测>阿里云centos7安装redis
安装redis yum install redis 启动redis systemctl start redis.service 设置redis开机启动 systemctl enable redis.s ...
- 关于Javascript闭包(Closure)
闭包(closure)是Javascript语言的一个难点,也是它的特色,很多高级应用都要依靠闭包实现. 一.变量的作用域 要理解闭包,首先必须理解Javascript特殊的变量作用域. 变量的作用域 ...
- STL进阶--vector vs deque
vector class Dog; // 例 1: vector<Dog> vec(6); // vec.capacity() == 6, vec.size() == 6, // 默认构造 ...
- C++进阶--拥有资源句柄的类(浅拷贝,深拷贝,虚构造函数)
// Person通过指针拥有string class Person { public: Person(string name) { pName_ = new string(name); } ~Per ...
- 【转】探索 ConcurrentHashMap 高并发性的实现机制
原文链接:https://www.ibm.com/developerworks/cn/java/java-lo-concurrenthashmap/ <探索 ConcurrentHashMap ...