【NOI2005】聪聪和可可 概率与期望 记忆化搜索
1415: [Noi2005]聪聪和可可
Time Limit: 10 Sec Memory Limit: 162 MB
Submit: 1635 Solved: 958
[Submit][Status][Discuss]
Description

Input
第2行包含两个整数C和M,以空格分隔,分别表示初始时聪聪和可可所在的景点的编号。
接下来E行,每行两个整数,第i+2行的两个整数Ai和Bi表示景点Ai和景点Bi之间有一条路。
所有的路都是无向的,即:如果能从A走到B,就可以从B走到A。
输入保证任何两个景点之间不会有多于一条路直接相连,且聪聪和可可之间必有路直接或间接的相连。
Output
Sample Input
4 3
1 4
1 2
2 3
3 4
【输入样例2】
9 9
9 3
1 2
2 3
3 4
4 5
3 6
4 6
4 7
7 8
8 9
Sample Output
1.500
【输出样例2】
2.167
HINT
【样例说明1】
开始时,聪聪和可可分别在景点1和景点4。
第一个时刻,聪聪先走,她向更靠近可可(景点4)的景点走动,走到景点2,然后走到景点3;假定忽略走路所花时间。
可可后走,有两种可能:
第一种是走到景点3,这样聪聪和可可到达同一个景点,可可被吃掉,步数为1,概率为 。
第二种是停在景点4,不被吃掉。概率为 。
到第二个时刻,聪聪向更靠近可可(景点4)的景点走动,只需要走一步即和可可在同一景点。因此这种情况下聪聪会在两步吃掉可可。
所以平均的步数是1* +2* =1.5步。
对于所有的数据,1≤N,E≤1000。
对于50%的数据,1≤N≤50。
Solution
设F[i][j]为猫在i点,鼠在j点,猫鼠相遇的期望时间。
一般是考虑倒着来做的,但这题倒着并不好做,因此考虑记忆化搜索。
设p[i][j]为猫在i点,鼠在j点,猫下一个时刻会到达的点。
分情况讨论:
1.若p[i][j] == j或p[p[i][j]][j] == j,F[i][j] = 12.设t为p[p[i][j]][j],F[i][j] = (F[t][j]+ΣF[t][k])/(cnt+1),cnt为j点能直接到达的点的数目。
Code
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <algorithm>
#include <queue> using namespace std; #define REP(i, a, b) for (int i = (a), i##_end_ = (b); i <= i##_end_; ++i)
#define REP_EDGE(i, a) for (int i = (a); i != -1; i = e[i].nxt)
#define mset(a, b) memset(a, b, sizeof(a))
const int MAXN = 1e3+;
int n, m;
struct Edge
{
int v, nxt;
Edge(int v = , int nxt = ): v(v), nxt(nxt) {}
}e[MAXN*];
int head[MAXN], label;
queue <int> q;
int dist[MAXN], p[MAXN][MAXN];
bool vis[MAXN];
double f[MAXN][MAXN]; void ins(int u, int v) { e[++label] = Edge(v, head[u]), head[u] = label; } void SPFA(int s)
{
mset(dist, -);
q.push(s), dist[s] = , vis[s] = , p[s][s] = ;
while (!q.empty())
{
int u = q.front(); vis[u] = , q.pop();
REP_EDGE(i, head[u])
{
int v = e[i].v;
if (dist[v] == - || dist[v] >= dist[u]+)
{
if (dist[v] == - || dist[v] > dist[u]+ || (dist[v] == dist[u]+ && p[s][v] > p[s][u]))
{
p[s][v] = p[s][u];
if (!p[s][v]) p[s][v] = v;
}
dist[v] = dist[u]+;
if (!vis[v]) vis[v] = , q.push(v);
}
}
}
} double dfs(int u, int v)
{
if (u == v) return ;
if (p[u][v] == v || p[p[u][v]][v] == v) return ;
if (f[u][v]) return f[u][v];
int temp = p[p[u][v]][v], cnt = ;
double ret = dfs(temp, v);
REP_EDGE(i, head[v]) cnt ++, ret += dfs(temp, e[i].v);
ret /= cnt, ret += 1.0;
return f[u][v] = ret;
} int main()
{
int S, T, u, v;
scanf("%d %d %d %d", &n, &m, &S, &T);
REP(i, , n) head[i] = -; label = -;
REP(i, , m) scanf("%d %d", &u, &v), ins(u, v), ins(v, u);
REP(i, , n) SPFA(i);
printf("%.3lf\n", dfs(S, T));
return ;
}
【NOI2005】聪聪和可可 概率与期望 记忆化搜索的更多相关文章
- 【bzoj1415】[Noi2005]聪聪和可可 期望记忆化搜索
题目描述 输入 数据的第1行为两个整数N和E,以空格分隔,分别表示森林中的景点数和连接相邻景点的路的条数. 第2行包含两个整数C和M,以空格分隔,分别表示初始时聪聪和可可所在的景点的编号. 接下来E行 ...
- UVa 11762 Race to 1 (数学期望 + 记忆化搜索)
题意:给定一个整数 n ,然后你要把它变成 1,变换操作就是随机从小于等于 n 的素数中选一个p,如果这个数是 n 的约数,那么就可以变成 n/p,否则还是本身,问你把它变成 1 的数学期望是多少. ...
- uva 11762 数学期望+记忆化搜索
题目大意:给一个正整数N,每次可以在不超过N的素数中随机选择一个P,如果P是N的约数,则把N变成N/p,否则N不变,问平均情况下需要多少次随机选择,才能把N变成1? 分析:根据数学期望的线性和全期望公 ...
- BZOJ1415 聪聪和可可 —— 期望 记忆化搜索
题目链接:https://vjudge.net/problem/HYSBZ-1415 1415: [Noi2005]聪聪和可可 Time Limit: 10 Sec Memory Limit: 16 ...
- LightOJ 1038 Race to 1 Again (概率DP,记忆化搜索)
题意:给定一个数 n,然后每次除以他的一个因数,如果除到1则结束,问期望是多少. 析:概率DP,可以用记忆公搜索来做,dp[i] = 1/m*sum(dp[j] + 1) + 1/m * (dp[i] ...
- Java实现 LeetCode 688 “马”在棋盘上的概率(DFS+记忆化搜索)
688. "马"在棋盘上的概率 已知一个 NxN 的国际象棋棋盘,棋盘的行号和列号都是从 0 开始.即最左上角的格子记为 (0, 0),最右下角的记为 (N-1, N-1). 现有 ...
- bzoj 1415 期望+记忆化搜索 ****
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAdkAAAIfCAIAAACzfDFhAAAgAElEQVR4nOy9bVwTW57vm5fnhed+Pn
- 【BZOJ 1415】 1415: [Noi2005]聪聪和可可 (bfs+记忆化搜索+期望)
1415: [Noi2005]聪聪和可可 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1640 Solved: 962 Description I ...
- 【BZOJ】1415: [Noi2005]聪聪和可可【期望】【最短路】【记忆化搜索】
1415: [Noi2005]聪聪和可可 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2335 Solved: 1373[Submit][Stat ...
随机推荐
- 谷歌AMP和百度MIP是什么鬼?
首先我们来看定义: 谷歌AMP(Accelerated Mobile Pages,加速移动页面)是Google推出的一种为静态内容构建 web 页面,提供可靠和快速的渲染,加快页面加载的时间,特别是在 ...
- bzoj千题计划175:bzoj1303: [CQOI2009]中位数图
http://www.lydsy.com/JudgeOnline/problem.php?id=1303 令c[i]表示前i个数中,比d大的数与比d小的数的差,那么如果c[l]=c[r],则[l+1, ...
- PHP 文件加密Zend Guard Loader 学习和使用(如何安装ioncube扩展对PHP代码加密)
一.大体流程图 二.PHP 项目文件加密 下表列出了Zend产品中的PHP版本及其内部API版本和Zend产品版本. 如何加密请往后看 三.如何使用 第一步:确认当前环境 Amai Phalcon 前 ...
- 干货:制作科研slide简明规范
- [原]Android 初遇Http错误 httpClient.execute
错误源头: HttpResponse response = httpClient.execute(httpget); 错误信息: android.os.NetworkOnMainThreadExcep ...
- 分布式监控工具Ganglia 介绍 与 集群部署.
如果你目的很明确就是冲着标题来的,不爱看我唠叨,请直接进入第二个分割线之后的内容. 其实之前就是有做Swift监控平台的打算的,但是因为没什么硬性需求么,也不要紧的,就一直搁置了.最近实验室来了个大二 ...
- spm
Spatial Pyramid Matching 看了很多关于SPM的介绍,但是网络上的资源大多都是对论文Beyond bags of features: Spatial pyramid matchi ...
- 使用InstallShield打包windriver驱动-转
转自:http://blog.csdn.net/weixin_29796711/article/details/72822052 用户在使用我们用windriver开发的硬件驱动时,需要先安装wind ...
- C#中的GetElementsByClassName方法
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 public static class Spread { ...
- On the Bias/Variance tradeoff in Machine Learning
参考:https://codesachin.wordpress.com/2015/08/05/on-the-biasvariance-tradeoff-in-machine-learning/ 之前一 ...